BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21226220)

  • 21. Current Approaches to Alkyl Levulinates
    Liu X; Yang W; Zhang Q; Li C; Wu H
    Front Chem; 2020; 8():794. PubMed ID: 33195025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of the Hydrogen Source on the Selective Production of γ-Valerolactone and 2-Methyltetrahydrofuran from Levulinic Acid.
    Obregón I; Gandarias I; Al-Shaal MG; Mevissen C; Arias PL; Palkovits R
    ChemSusChem; 2016 Sep; 9(17):2488-95. PubMed ID: 27483194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research.
    Feng J; Fan T; Ma C; Xu Y; Jiang J; Pan H
    J Agric Food Chem; 2020 Nov; 68(47):13760-13769. PubMed ID: 33196190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of Silico-Phospho-Aluminum Nanosheets by Adding Amino Acid and its Catalysis in the Conversion of Furfuryl Alcohol to Fuel Additives.
    Ji Y; Zuo Y; Liu H; Wang F; Guo X
    ChemSusChem; 2022 Jul; 15(14):e202200747. PubMed ID: 35475549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization.
    Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y
    Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol.
    Li M; Li G; Li N; Wang A; Dong W; Wang X; Cong Y
    Chem Commun (Camb); 2014 Feb; 50(12):1414-6. PubMed ID: 24382493
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Pot 2-Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni-Cu/Al2 O3 Catalysts.
    Obregón I; Gandarias I; Miletić N; Ocio A; Arias PL
    ChemSusChem; 2015 Oct; 8(20):3483-8. PubMed ID: 26350168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iodine-catalyzed amination of benzoxazoles: a metal-free route to 2-aminobenzoxazoles under mild conditions.
    Lamani M; Prabhu KR
    J Org Chem; 2011 Oct; 76(19):7938-44. PubMed ID: 21866914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphology Tailoring of Sulfonic Acid Functionalized Organosilica Nanohybrids for the Synthesis of Biomass-Derived Alkyl Levulinates.
    An S; Song D; Lu B; Yang X; Guo YH
    Chemistry; 2015 Jul; 21(30):10786-98. PubMed ID: 26087746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone.
    Michel C; Zaffran J; Ruppert AM; Matras-Michalska J; Jędrzejczyk M; Grams J; Sautet P
    Chem Commun (Camb); 2014 Oct; 50(83):12450-3. PubMed ID: 24980805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions.
    van Zandvoort I; Wang Y; Rasrendra CB; van Eck ER; Bruijnincx PC; Heeres HJ; Weckhuysen BM
    ChemSusChem; 2013 Sep; 6(9):1745-58. PubMed ID: 23836679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alkyl levulinates as `green chemistry' precursors: butane-1,4-diyl bis(4-oxopentanoate) and hexane-1,6-diyl bis(4-oxopentanoate).
    Gainsford GJ; Hinkley S
    Acta Crystallogr C; 2013 Jun; 69(Pt 6):654-7. PubMed ID: 23744390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of levulinic acid from macroalgae by hydrothermal conversion with ionic resin catalyst.
    Park Y; Jeong GT
    Bioresour Technol; 2024 Jun; 402():130778. PubMed ID: 38701985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods.
    Assary RS; Kim T; Low JJ; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Dec; 14(48):16603-11. PubMed ID: 22932938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A review on solid acid catalysis for sustainable production of levulinic acid and levulinate esters from biomass derivatives.
    Tian Y; Zhang F; Wang J; Cao L; Han Q
    Bioresour Technol; 2021 Dec; 342():125977. PubMed ID: 34852443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate.
    Elumalai S; Agarwal B; Runge TM; Sangwan RS
    Carbohydr Polym; 2016 Oct; 150():286-98. PubMed ID: 27312640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conversion of levulinate into succinate through catalytic oxidative carbon-carbon bond cleavage with dioxygen.
    Liu J; Du Z; Lu T; Xu J
    ChemSusChem; 2013 Dec; 6(12):2255-8. PubMed ID: 23922234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-pot preparation of methyl levulinate from catalytic alcoholysis of cellulose in near-critical methanol.
    Wu X; Fu J; Lu X
    Carbohydr Res; 2012 Sep; 358():37-9. PubMed ID: 22841826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.