These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 2122636)

  • 1. Renal tissue impedance: responses of the real and imaginary component to experimental variations in medullary electrolytes.
    Sadowski J; Niewiadomski W; Rasmussen SN
    Acta Physiol Scand; 1990 Jul; 139(3):427-33. PubMed ID: 2122636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic evaluation of renal medullary electrolytes from measurement of tissue electrical admittance.
    Sadowski J
    Acta Physiol Pol; 1989; 40(3):329-37. PubMed ID: 2518368
    [No Abstract]   [Full Text] [Related]  

  • 3. Estimation of changes in renal tissue electrolytes from measurements of electrical admittance: application in the rat.
    Sadowski J
    Acta Physiol Pol; 1985; 36(5-6):339-44. PubMed ID: 3837602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal medullary electrolytes: effects of furosemide assessed by studies in vivo of electrical admittance.
    Portalska E; Sadowski J
    Arch Int Physiol Biochim; 1984 Dec; 92(5):345-54. PubMed ID: 6085550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic evaluation of renal electrolyte gradient by in situ tissue impedance studies.
    Sadowski J; Portalska E
    Kidney Int; 1983 Dec; 24(6):800-3. PubMed ID: 6425551
    [No Abstract]   [Full Text] [Related]  

  • 6. Furosemide-induced renal medullary hypoperfusion in the rat: role of tissue tonicity, prostaglandins and angiotensin II.
    Dobrowolski L; Sadowski J
    J Physiol; 2005 Sep; 567(Pt 2):613-20. PubMed ID: 15961422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney.
    Boesen EI; Pollock DM
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F185-91. PubMed ID: 16912066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue electrical admittance (electrolyte concentration) in rat renal medulla: effects of furosemide and acetazolamide.
    Badzyńska B; Sadowski J; Kompanowska-Jezierska E
    Arch Int Physiol Biochim; 1990 Aug; 98(4):131-40. PubMed ID: 1707608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of renal papillary-medullary lesion on the antihypertensive effect of furosemide and development of salt-sensitive hypertension in Dahl-S rats.
    Haugan K; Shalmi M; Petersen JS; Marcussen N; Spannow J; Christensen S
    J Pharmacol Exp Ther; 1997 Mar; 280(3):1415-22. PubMed ID: 9067331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of volume expansion on renal citrate and ammonia metabolism in KCl-deficient rats.
    Adler S; Zett B; Anderson B; Fraley DS
    J Clin Invest; 1975 Aug; 56(2):391-400. PubMed ID: 239022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of equivolume, equiosmolar solutions of mannitol and hypertonic saline with or without furosemide on brain water content in normal rats.
    Wang LC; Papangelou A; Lin C; Mirski MA; Gottschalk A; Toung TJ
    Anesthesiology; 2013 Apr; 118(4):903-13. PubMed ID: 23442754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion concentration and haematocrit as determinants of impedance in an erythrocyte suspension model of renal medullary tissue.
    Niewiadomski W; Sadowski J; Badzyńska B; Rasmussen SN
    Phys Med Biol; 1990 Nov; 35(11):1575-83. PubMed ID: 2287630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of furosemide and hypertonic mannitol on the corticomedullary albumin gradient of the rat kidney (author's transl)].
    Heuer LJ; Osten H
    Res Exp Med (Berl); 1974 Jan; 162(2):125-32. PubMed ID: 4815307
    [No Abstract]   [Full Text] [Related]  

  • 15. Differential effect of frusemide on renal medullary and cortical blood flow in the anaesthetised rat.
    Dobrowolski L; B dzyńska B; Sadowski J
    Exp Physiol; 2000 Nov; 85(6):783-9. PubMed ID: 11187972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal tubular effects of sodium fluoride.
    Rush GF; Willis LR
    J Pharmacol Exp Ther; 1982 Nov; 223(2):275-9. PubMed ID: 6290633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions.
    Moreno M; Murphy C; Goldsmith C
    J Lab Clin Med; 1969 Feb; 73(2):291-8. PubMed ID: 5764025
    [No Abstract]   [Full Text] [Related]  

  • 18. Conductance studies of rat renal medulla for rapid estimation of extracellular electrolyte concentration.
    Dobrowolski L; Sadowski J; Kompanowska-Jezierska E
    Clin Phys Physiol Meas; 1992 Aug; 13(3):257-62. PubMed ID: 1424475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of hypertonicity-induced aquaporin-1 by sodium chloride, urea, betaine, and heat shock in murine renal medullary cells.
    Umenishi F; Yoshihara S; Narikiyo T; Schrier RW
    J Am Soc Nephrol; 2005 Mar; 16(3):600-7. PubMed ID: 15647343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of hyperosmolar glycerol, mannitol and sorbitol solutions on kidney function].
    Golosubow G; Golosubow A
    Z Exp Chir Transplant Kunstliche Organe; 1986; 19(2):113-32. PubMed ID: 3088861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.