These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 21226515)

  • 1. Unlocking the sugar "steric gate" of DNA polymerases.
    Brown JA; Suo Z
    Biochemistry; 2011 Feb; 50(7):1135-42. PubMed ID: 21226515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity.
    Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R
    J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change.
    Nevin P; Engen JR; Beuning PJ
    DNA Repair (Amst); 2015 May; 29():65-73. PubMed ID: 25684709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of steric gate mutants reveal different constraints within the active sites of Y-family and A-family DNA polymerases.
    DeLucia AM; Chaudhuri S; Potapova O; Grindley ND; Joyce CM
    J Biol Chem; 2006 Sep; 281(37):27286-91. PubMed ID: 16831866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism of ribonucleotide discrimination by a Y-family DNA polymerase.
    Kirouac KN; Suo Z; Ling H
    J Mol Biol; 2011 Apr; 407(3):382-90. PubMed ID: 21295588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.
    Su Y; Egli M; Guengerich FP
    J Biol Chem; 2016 Feb; 291(8):3747-56. PubMed ID: 26740629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The presence of ribonucleotides in DNA has an ambiguous impact on the maintenance of genetic stability].
    Łazowski K; Makiela-Dzbenska K
    Postepy Biochem; 2019 Jun; 65(2):143-152. PubMed ID: 31642653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primer terminal ribonucleotide alters the active site dynamics of DNA polymerase η and reduces DNA synthesis fidelity.
    Chang C; Lee Luo C; Eleraky S; Lin A; Zhou G; Gao Y
    J Biol Chem; 2023 Mar; 299(3):102938. PubMed ID: 36702254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sensor complements the steric gate when DNA polymerase ϵ discriminates ribonucleotides.
    Parkash V; Kulkarni Y; Bylund GO; Osterman P; Kamerlin SCL; Johansson E
    Nucleic Acids Res; 2023 Nov; 51(20):11225-11238. PubMed ID: 37819038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RB69 DNA polymerase structure, kinetics, and fidelity.
    Xia S; Konigsberg WH
    Biochemistry; 2014 May; 53(17):2752-67. PubMed ID: 24720884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A polar filter in DNA polymerases prevents ribonucleotide incorporation.
    Johnson MK; Kottur J; Nair DT
    Nucleic Acids Res; 2019 Nov; 47(20):10693-10705. PubMed ID: 31544946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential furanose selection in the active sites of archaeal DNA polymerases probed by fixed-conformation nucleotide analogues.
    Ketkar A; Zafar MK; Banerjee S; Marquez VE; Egli M; Eoff RL
    Biochemistry; 2012 Nov; 51(45):9234-44. PubMed ID: 23050956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Escherichia coli active site dnaE alleles with altered base and sugar selectivity.
    Vaisman A; Łazowski K; Reijns MAM; Walsh E; McDonald JP; Moreno KC; Quiros DR; Schmidt M; Kranz H; Yang W; Makiela-Dzbenska K; Woodgate R
    Mol Microbiol; 2021 Sep; 116(3):909-925. PubMed ID: 34181784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a 'steric gate' residue for discrimination against ribonucleotides.
    DeLucia AM; Grindley ND; Joyce CM
    Nucleic Acids Res; 2003 Jul; 31(14):4129-37. PubMed ID: 12853630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase.
    Kasiviswanathan R; Copeland WC
    J Biol Chem; 2011 Sep; 286(36):31490-500. PubMed ID: 21778232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base.
    Washington MT; Johnson RE; Prakash L; Prakash S
    Mol Cell Biol; 2004 Jan; 24(2):936-43. PubMed ID: 14701763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases.
    Maxwell BA; Suo Z
    Biochemistry; 2014 May; 53(17):2804-14. PubMed ID: 24716482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic basis of sugar selection by a Y-family DNA polymerase from Sulfolobus solfataricus P2.
    Sherrer SM; Beyer DC; Xia CX; Fowler JD; Suo Z
    Biochemistry; 2010 Nov; 49(47):10179-86. PubMed ID: 20973506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choosing the right sugar: how polymerases select a nucleotide substrate.
    Joyce CM
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1619-22. PubMed ID: 9050827
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.