BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21226520)

  • 1. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells.
    Takemoto K; Matsuda T; McDougall M; Klaubert DH; Hasegawa A; Los GV; Wood KV; Miyawaki A; Nagai T
    ACS Chem Biol; 2011 May; 6(5):401-6. PubMed ID: 21226520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward understanding the mechanism of chromophore-assisted laser inactivation--evidence for the primary photochemical steps.
    Horstkotte E; Schröder T; Niewöhner J; Thiel E; Jay DG; Henning SW
    Photochem Photobiol; 2005; 81(2):358-66. PubMed ID: 15623352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(II) tris-bipyridyl as an unusually efficient "warhead".
    Lee J; Yu P; Xiao X; Kodadek T
    Mol Biosyst; 2008 Jan; 4(1):59-65. PubMed ID: 18075676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein.
    Tanabe T; Oyamada M; Fujita K; Dai P; Tanaka H; Takamatsu T
    Nat Methods; 2005 Jul; 2(7):503-5. PubMed ID: 15973419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of photosensitized singlet oxygen production by a fluorescent protein.
    Ragàs X; Cooper LP; White JH; Nonell S; Flors C
    Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically targeted chromophore-assisted light inactivation.
    Tour O; Meijer RM; Zacharias DA; Adams SR; Tsien RY
    Nat Biotechnol; 2003 Dec; 21(12):1505-8. PubMed ID: 14625562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer.
    Yogo T; Urano Y; Mizushima A; Sunahara H; Inoue T; Hirose K; Iino M; Kikuchi K; Nagano T
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):28-32. PubMed ID: 18172220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HaloTag-based purification of functional human kinases from mammalian cells.
    Ohana RF; Hurst R; Vidugiriene J; Slater MR; Wood KV; Urh M
    Protein Expr Purif; 2011 Apr; 76(2):154-64. PubMed ID: 21129486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial specificity of chromophore assisted laser inactivation of protein function.
    Linden KG; Liao JC; Jay DG
    Biophys J; 1992 Apr; 61(4):956-62. PubMed ID: 1581504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore-assisted laser inactivation in cell biology.
    Jacobson K; Rajfur Z; Vitriol E; Hahn K
    Trends Cell Biol; 2008 Sep; 18(9):443-50. PubMed ID: 18706812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins.
    Vitriol EA; Uetrecht AC; Shen F; Jacobson K; Bear JE
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6702-7. PubMed ID: 17420475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded photosensitizer.
    Bulina ME; Chudakov DM; Britanova OV; Yanushevich YG; Staroverov DB; Chepurnykh TV; Merzlyak EM; Shkrob MA; Lukyanov S; Lukyanov KA
    Nat Biotechnol; 2006 Jan; 24(1):95-9. PubMed ID: 16369538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803.
    Nishiyama Y; Allakhverdiev SI; Yamamoto H; Hayashi H; Murata N
    Biochemistry; 2004 Sep; 43(35):11321-30. PubMed ID: 15366942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed.
    Bulina ME; Lukyanov KA; Britanova OV; Onichtchouk D; Lukyanov S; Chudakov DM
    Nat Protoc; 2006; 1(2):947-53. PubMed ID: 17406328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved studies of singlet-oxygen emission from L1210 leukemia cells labeled with 5-(N-hexadecanoyl)amino eosin. A comparison with a one-dimensional model of singlet-oxygen diffusion and quenching.
    Baker A; Kanofsky JR
    Photochem Photobiol; 1993 Apr; 57(4):720-7. PubMed ID: 7685124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulse-chase experiment for the analysis of protein stability in cultured mammalian cells by covalent fluorescent labeling of fusion proteins.
    Yamaguchi K; Inoue S; Ohara O; Nagase T
    Methods Mol Biol; 2009; 577():121-31. PubMed ID: 19718513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental effects on the aggregation of some xanthene dyes used in lasers.
    De S; Das S; Girigoswami A
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1821-33. PubMed ID: 15863053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the photobleaching process of eosin Y in aqueous solution by thermal lens spectroscopy.
    Herculano LS; Malacarne LC; Zanuto VS; Lukasievicz GV; Capeloto OA; Astrath NG
    J Phys Chem B; 2013 Feb; 117(6):1932-7. PubMed ID: 23374106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient and photostable photosensitizer based on BODIPY chromophore.
    Yogo T; Urano Y; Ishitsuka Y; Maniwa F; Nagano T
    J Am Chem Soc; 2005 Sep; 127(35):12162-3. PubMed ID: 16131160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.