These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 21226963)
21. PAD4-dependent antibiosis contributes to the ssi2-conferred hyper-resistance to the green peach aphid. Louis J; Leung Q; Pegadaraju V; Reese J; Shah J Mol Plant Microbe Interact; 2010 May; 23(5):618-27. PubMed ID: 20367470 [TBL] [Abstract][Full Text] [Related]
22. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Sun Y; Guo H; Zhu-Salzman K; Ge F Plant Sci; 2013 Sep; 210():128-40. PubMed ID: 23849120 [TBL] [Abstract][Full Text] [Related]
23. GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters. Miyata LY; Harakava R; Stipp LC; Mendes BM; Appezzato-da-Glória B; de Assis Alves Mourão Filho F Plant Cell Rep; 2012 Nov; 31(11):2005-13. PubMed ID: 22801867 [TBL] [Abstract][Full Text] [Related]
24. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Divol F; Vilaine F; Thibivilliers S; Kusiak C; Sauge MH; Dinant S Plant Cell Environ; 2007 Feb; 30(2):187-201. PubMed ID: 17238910 [TBL] [Abstract][Full Text] [Related]
25. TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Singh V; Louis J; Ayre BG; Reese JC; Pegadaraju V; Shah J Plant J; 2011 Jul; 67(1):94-104. PubMed ID: 21426427 [TBL] [Abstract][Full Text] [Related]
26. Aphid protein effectors promote aphid colonization in a plant species-specific manner. Pitino M; Hogenhout SA Mol Plant Microbe Interact; 2013 Jan; 26(1):130-9. PubMed ID: 23035913 [TBL] [Abstract][Full Text] [Related]
27. Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Beneteau J; Renard D; Marché L; Douville E; Lavenant L; Rahbé Y; Dupont D; Vilaine F; Dinant S Plant Physiol; 2010 Jul; 153(3):1345-61. PubMed ID: 20442276 [TBL] [Abstract][Full Text] [Related]
28. Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. Xu J; Padilla CS; Li J; Wickramanayake J; Fischer HD; Goggin FL Mol Plant Pathol; 2021 Jun; 22(6):727-736. PubMed ID: 33829627 [TBL] [Abstract][Full Text] [Related]
29. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). Mewis I; Khan MA; Glawischnig E; Schreiner M; Ulrichs C PLoS One; 2012; 7(11):e48661. PubMed ID: 23144921 [TBL] [Abstract][Full Text] [Related]
30. Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato aphid Macrosiphum euphorbiae. Alvarez AE; Broglia VG; Alberti D'Amato AM; Wouters D; van der Vossen E; Garzo E; Tjallingii WF; Dicke M; Vosman B Insect Sci; 2013 Apr; 20(2):207-27. PubMed ID: 23955861 [TBL] [Abstract][Full Text] [Related]
32. Molecular chaperone function of Arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Lee JR; Boltz KA; Lee SY Biochem Biophys Res Commun; 2014 Jan; 443(1):18-21. PubMed ID: 24269669 [TBL] [Abstract][Full Text] [Related]
33. Nutrition versus defense: Why Myzus persicae (green peach aphid) prefers and performs better on young leaves of cabbage. Cao HH; Zhang ZF; Wang XF; Liu TX PLoS One; 2018; 13(4):e0196219. PubMed ID: 29684073 [TBL] [Abstract][Full Text] [Related]
34. Discrimination of Arabidopsis PAD4 activities in defense against green peach aphid and pathogens. Louis J; Gobbato E; Mondal HA; Feys BJ; Parker JE; Shah J Plant Physiol; 2012 Apr; 158(4):1860-72. PubMed ID: 22353573 [TBL] [Abstract][Full Text] [Related]
35. Pectin Methylesterases Modulate Plant Homogalacturonan Status in Defenses against the Aphid Silva-Sanzana C; Celiz-Balboa J; Garzo E; Marcus SE; Parra-Rojas JP; Rojas B; Olmedo P; Rubilar MA; Rios I; Chorbadjian RA; Fereres A; Knox P; Saez-Aguayo S; Blanco-Herrera F Plant Cell; 2019 Aug; 31(8):1913-1929. PubMed ID: 31126981 [TBL] [Abstract][Full Text] [Related]
36. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Kim JH; Lee BW; Schroeder FC; Jander G Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197 [TBL] [Abstract][Full Text] [Related]
37. Interplay between MYZUS PERSICAE-INDUCED LIPASE 1 and OPDA signaling in limiting green peach aphid infestation on Arabidopsis thaliana. Archer L; Mondal HA; Behera S; Twayana M; Patel M; Louis J; Nalam VJ; Keereetaweep J; Chowdhury Z; Shah J J Exp Bot; 2023 Nov; 74(21):6860-6873. PubMed ID: 37696760 [TBL] [Abstract][Full Text] [Related]
38. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. De Vos M; Jander G Plant Cell Environ; 2009 Nov; 32(11):1548-60. PubMed ID: 19558622 [TBL] [Abstract][Full Text] [Related]
39. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Elzinga DA; De Vos M; Jander G Mol Plant Microbe Interact; 2014 Jul; 27(7):747-56. PubMed ID: 24654979 [TBL] [Abstract][Full Text] [Related]
40. The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect. Hunt EJ; Pritchard J; Bennett MJ; Zhu X; Barrett DA; Allen T; Bale J; Newbury HJ Mol Ecol; 2006 Nov; 15(13):4203-13. PubMed ID: 17054513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]