These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21227581)

  • 1. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.
    Shen X; Zhao L; Ding Y; Liu B; Zeng H; Zhong L; Li X
    J Hazard Mater; 2011 Feb; 186(2-3):1773-80. PubMed ID: 21227581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics.
    Roostapour A; Kam SI
    J Hazard Mater; 2012 Dec; 243():37-51. PubMed ID: 23107288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Technical and policy challenges in deep vadose zone remediation of metals and radionuclides.
    Dresel PE; Wellman DM; Cantrell KJ; Truex MJ
    Environ Sci Technol; 2011 May; 45(10):4207-16. PubMed ID: 21395250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam.
    Zhong L; Szecsody J; Oostrom M; Truex M; Shen X; Li X
    J Hazard Mater; 2011 Jul; 191(1-3):249-57. PubMed ID: 21592663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone.
    Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR
    J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects.
    Henry EJ; Smith JE
    J Contam Hydrol; 2002 Jun; 56(3-4):247-70. PubMed ID: 12102321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy.
    Phenrat T; Fagerlund F; Illangasekare T; Lowry GV; Tilton RD
    Environ Sci Technol; 2011 Jul; 45(14):6102-9. PubMed ID: 21678951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using radon-222 as indicator for the evaluation of the efficiency of groundwater remediation by in situ air sparging.
    Schubert M; Schmidt A; Müller K; Weiss H
    J Environ Radioact; 2011 Feb; 102(2):193-9. PubMed ID: 21146260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant enhanced electrokinetic remediation of DDT from soils.
    Karagunduz A; Gezer A; Karasuloglu G
    Sci Total Environ; 2007 Oct; 385(1-3):1-11. PubMed ID: 17706747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications.
    Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ
    J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model fit to experimental data for foam-assisted deep vadose zone remediation.
    Roostapour A; Lee G; Zhong L; Kam SI
    J Hazard Mater; 2014 Jan; 264():460-73. PubMed ID: 24295900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of sandy soils using surfactant solutions and foams.
    Couto HJ; Massarani G; Biscaia EC; Sant'Anna GL
    J Hazard Mater; 2009 May; 164(2-3):1325-34. PubMed ID: 19081185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
    Cey EE; Rudolph DL; Passmore J
    J Contam Hydrol; 2009 Jun; 107(1-2):45-57. PubMed ID: 19435645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant-enhanced air sparging in saturated sand.
    Kim H; Soh HE; Annable MD; Kim DJ
    Environ Sci Technol; 2004 Feb; 38(4):1170-5. PubMed ID: 14998033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.
    Page JW; Soga K; Illangasekare T
    J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils.
    Karthick A; Roy B; Chattopadhyay P
    J Environ Manage; 2019 Jun; 240():93-107. PubMed ID: 30928799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.