BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21228127)

  • 21. A sensitive cell-based assay for the detection of residual infectious West Nile virus.
    Koldijk MH; Bogaards JA; Kostense S; de Vocht M; Gijsbers L; Ter Haak M; Ophorst C; Brakenhoff JP; Weverling GJ; Guichoux JY; Uytdehaag F; Lewis J; Goudsmit J; Marzio G
    Vaccine; 2007 Sep; 25(39-40):6872-81. PubMed ID: 17707954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion.
    Kimura T; Ohyama A
    J Gen Virol; 1988 Jun; 69 ( Pt 6)():1247-54. PubMed ID: 3385406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus.
    Iglesias MC; Frenkiel MP; Mollier K; Souque P; Despres P; Charneau P
    J Gene Med; 2006 Mar; 8(3):265-74. PubMed ID: 16308885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein.
    Chu JJH; Rajamanonmani R; Li J; Bhuvanakantham R; Lescar J; Ng ML
    J Gen Virol; 2005 Feb; 86(Pt 2):405-412. PubMed ID: 15659760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane.
    Vancini R; Kramer LD; Ribeiro M; Hernandez R; Brown D
    Virology; 2013 Jan; 435(2):406-14. PubMed ID: 23099205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis.
    Purtha WE; Myers N; Mitaksov V; Sitati E; Connolly J; Fremont DH; Hansen TH; Diamond MS
    Eur J Immunol; 2007 Jul; 37(7):1845-54. PubMed ID: 17559174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [West Nile fever and West Nile encephalitis].
    Kurane I
    Rinsho Shinkeigaku; 2005 Nov; 45(11):884-6. PubMed ID: 16447753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide inhibitors of dengue virus and West Nile virus infectivity.
    Hrobowski YM; Garry RF; Michael SF
    Virol J; 2005 Jun; 2():49. PubMed ID: 15927084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the West Nile virus envelope glycoprotein.
    Nybakken GE; Nelson CA; Chen BR; Diamond MS; Fremont DH
    J Virol; 2006 Dec; 80(23):11467-74. PubMed ID: 16987985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of pH on the early interaction of West Nile virus with P388D1 cells.
    Kimura T; Gollins SW; Porterfield JS
    J Gen Virol; 1986 Nov; 67 ( Pt 11)():2423-33. PubMed ID: 3783128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flavivirus cell entry and membrane fusion.
    Smit JM; Moesker B; Rodenhuis-Zybert I; Wilschut J
    Viruses; 2011 Feb; 3(2):160-171. PubMed ID: 22049308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of conserved motifs in the West Nile virus envelope essential for particle secretion.
    Garg H; Lee RT; Tek NO; Maurer-Stroh S; Joshi A
    BMC Microbiol; 2013 Sep; 13():197. PubMed ID: 24007503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic Modeling of West Nile Virus Fusion Indicates an Off-Pathway State.
    Park A; Graceffa O; Rawle RJ
    ACS Infect Dis; 2020 Dec; 6(12):3260-3268. PubMed ID: 33201665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protonation of individual histidine residues is not required for the pH-dependent entry of west nile virus: evaluation of the "histidine switch" hypothesis.
    Nelson S; Poddar S; Lin TY; Pierson TC
    J Virol; 2009 Dec; 83(23):12631-5. PubMed ID: 19776132
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The uncoating and infectivity of the flavivirus West Nile on interaction with cells: effects of pH and ammonium chloride.
    Gollins SW; Porterfield JS
    J Gen Virol; 1986 Sep; 67 ( Pt 9)():1941-50. PubMed ID: 3746254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The I22V and L72S substitutions in West Nile virus prM protein promote enhanced prM/E heterodimerisation and nucleocapsid incorporation.
    Setoh YX; Tan CS; Prow NA; Hobson-Peters J; Young PR; Khromykh AA; Hall RA
    Virol J; 2015 May; 12():72. PubMed ID: 25946997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The infectivity of prM-containing partially mature West Nile virus does not require the activity of cellular furin-like proteases.
    Mukherjee S; Lin TY; Dowd KA; Manhart CJ; Pierson TC
    J Virol; 2011 Nov; 85(22):12067-72. PubMed ID: 21880759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH-dependent fusion between the flavivirus West Nile and liposomal model membranes.
    Gollins SW; Porterfield JS
    J Gen Virol; 1986 Jan; 67 ( Pt 1)():157-66. PubMed ID: 3944582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid resistance.
    Martín-Acebes MA; Vázquez-Calvo A; Rincón V; Mateu MG; Sobrino F
    J Virol; 2011 Mar; 85(6):2733-40. PubMed ID: 21177816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force-induced globule-coil transition in laminin binding protein and its role for viral-cell membrane fusion.
    Zaitsev BN; Benedetti F; Mikhaylov AG; Korneev DV; Sekatskii SK; Karakouz T; Belavin PA; Netesova NA; Protopopova EV; Konovalova SN; Dietler G; Loktev VB
    J Mol Recognit; 2014 Dec; 27(12):727-38. PubMed ID: 25319621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.