These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21228169)

  • 1. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation.
    Slézia A; Hangya B; Ulbert I; Acsády L
    J Neurosci; 2011 Jan; 31(2):607-17. PubMed ID: 21228169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats.
    Ushimaru M; Kawaguchi Y
    J Neurosci; 2015 Aug; 35(34):11988-2001. PubMed ID: 26311779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks.
    Blumenfeld H; McCormick DA
    J Neurosci; 2000 Jul; 20(13):5153-62. PubMed ID: 10864972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
    Sheroziya M; Timofeev I
    J Neurosci; 2015 Sep; 35(38):13006-19. PubMed ID: 26400932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus- and species-specific properties of the slow (<1 Hz) sleep oscillation in thalamocortical neurons.
    Zhu L; Blethyn KL; Cope DW; Tsomaia V; Crunelli V; Hughes SW
    Neuroscience; 2006 Aug; 141(2):621-636. PubMed ID: 16777348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
    Steriade M; Nuñez A; Amzica F
    J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization.
    Ushimaru M; Ueta Y; Kawaguchi Y
    J Neurosci; 2012 Feb; 32(5):1730-46. PubMed ID: 22302813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo.
    Dossi RC; Nuñez A; Steriade M
    J Physiol; 1992 Feb; 447():215-34. PubMed ID: 1593448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global intracellular slow-wave dynamics of the thalamocortical system.
    Sheroziya M; Timofeev I
    J Neurosci; 2014 Jun; 34(26):8875-93. PubMed ID: 24966387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus.
    Nakamura KC; Sharott A; Magill PJ
    Cereb Cortex; 2014 Jan; 24(1):81-97. PubMed ID: 23042738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation.
    Grenier F; Timofeev I; Steriade M
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13929-34. PubMed ID: 9811903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalamic state influences timing precision in the thalamocortical circuit.
    Whitmire CJ; Liew YJ; Stanley GB
    J Neurophysiol; 2021 May; 125(5):1833-1850. PubMed ID: 33760642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel mutual information estimator to measure spike train correlations in a model thalamocortical network.
    Gribkova ED; Ibrahim BA; Llano DA
    J Neurophysiol; 2018 Dec; 120(6):2730-2744. PubMed ID: 30183459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.