These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21228336)

  • 1. Low abundance of sweat duct Cl- channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise.
    Brown MB; Haack KK; Pollack BP; Millard-Stafford M; McCarty NA
    Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R605-15. PubMed ID: 21228336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cytosolic pH on epithelial Na+ channel in normal and cystic fibrosis sweat ducts.
    Reddy MM; Wang XF; Quinton PM
    J Membr Biol; 2008; 225(1-3):1-11. PubMed ID: 18937003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apical heterotrimeric g-proteins activate CFTR in the native sweat duct.
    Reddy MM; Sun D; Quinton PM
    J Membr Biol; 2001 Jan; 179(1):51-61. PubMed ID: 11155209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands.
    Wine JJ; Char JE; Chen J; Cho HJ; Dunn C; Frisbee E; Joo NS; Milla C; Modlin SE; Park IH; Thomas EA; Tran KV; Verma R; Wolfe MH
    PLoS One; 2013; 8(10):e77114. PubMed ID: 24204751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of CFTR and ENaC in sweat glands.
    Reddy MM; Quinton PM
    Pflugers Arch; 2003 Jan; 445(4):499-503. PubMed ID: 12548396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular localization of Na(+)/H(+) exchanger 1, cystic fibrosis transmembrane conductance regulator, potassium channel, epithelial sodium channel γ and vacuolar-type H+-ATPase in human eccrine sweat glands.
    Li H; Zhang X; Zeng S; Chen L; Li X; Lin C; Zhang M; Shu S; Xie S; He Y; Yang L; Tang S; Fu X
    Acta Histochem; 2014 Oct; 116(8):1237-43. PubMed ID: 25081942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland.
    Catalán MA; Nakamoto T; Gonzalez-Begne M; Camden JM; Wall SM; Clarke LL; Melvin JE
    J Physiol; 2010 Feb; 588(Pt 4):713-24. PubMed ID: 20026617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sweat Na+ in cystic fibrosis and healthy individuals does not diminish thirst during exercise in the heat.
    Brown MB; McCarty NA; Millard-Stafford M
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1177-85. PubMed ID: 21813870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitfalls in the immunohistochemical localization of the cystic fibrosis transmembrane conductance regulator in paraffin embedded sweat glands.
    Claass A; Sommer M; de Jonge HR
    Histochem J; 2000 Oct; 32(10):617-24. PubMed ID: 11202158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function.
    Reddy MM; Light MJ; Quinton PM
    Nature; 1999 Nov; 402(6759):301-4. PubMed ID: 10580502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The need for salt: does a relationship exist between cystic fibrosis and exercise-associated hyponatremia?
    Lewis DP; Hoffman MD; Stuempfle KJ; Owen BE; Rogers IR; Verbalis JG; Hew-Butler TD
    J Strength Cond Res; 2014 Mar; 28(3):807-13. PubMed ID: 23897018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CFTR and ENaC functions in cystic fibrosis].
    Palma AG; Kotsias BA; Marino GI
    Medicina (B Aires); 2014; 74(2):133-9. PubMed ID: 24736260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct.
    Reddy MM; Quinton PM
    J Membr Biol; 2005 Sep; 207(1):23-33. PubMed ID: 16463140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor.
    Char JE; Wolfe MH; Cho HJ; Park IH; Jeong JH; Frisbee E; Dunn C; Davies Z; Milla C; Moss RB; Thomas EA; Wine JJ
    PLoS One; 2014; 9(2):e88564. PubMed ID: 24520399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of abnormal Cl- impermeability on sweating in cystic fibrosis.
    Bijman J; Quinton PM
    Am J Physiol; 1984 Jul; 247(1 Pt 1):C3-9. PubMed ID: 6331184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.
    Shamsuddin AK; Reddy MM; Quinton PM
    Exp Physiol; 2008 Aug; 93(8):969-81. PubMed ID: 18441335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR genotype and clinical outcomes of adult patients carried as cystic fibrosis disease.
    Bonadia LC; de Lima Marson FA; Ribeiro JD; Paschoal IA; Pereira MC; Ribeiro AF; Bertuzzo CS
    Gene; 2014 May; 540(2):183-90. PubMed ID: 24583165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic fibrosis transmembrane conductance regulator channel dysfunction in non-cystic fibrosis bronchiectasis.
    Bienvenu T; Sermet-Gaudelus I; Burgel PR; Hubert D; Crestani B; Bassinet L; Dusser D; Fajac I
    Am J Respir Crit Care Med; 2010 May; 181(10):1078-84. PubMed ID: 20167849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-based β-adrenergic sweat rate assay captures minimal cystic fibrosis transmembrane conductance regulator function.
    Salinas DB; Peng YH; Horwich B; Wee CP; Frisbee E; Maarek JM
    Pediatr Res; 2020 Jan; 87(1):137-145. PubMed ID: 31344706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+, K+, H+, Cl-, and Ca2+ concentrations in cystic fibrosis eccrine sweat in vivo and in vitro.
    Sato K; Sato F
    J Lab Clin Med; 1990 Apr; 115(4):504-11. PubMed ID: 2182749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.