BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 2122877)

  • 21. Expression of secreted phosphoprotein 1 (osteopontin) in human sensorimotor cortex and spinal cord: Changes in patients with amyotrophic lateral sclerosis.
    Yamamoto T; Murayama S; Takao M; Isa T; Higo N
    Brain Res; 2017 Jan; 1655():168-175. PubMed ID: 27823929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of immune processes in amyotrophic lateral sclerosis pathogenesis.
    Alexianu ME
    Rom J Neurol Psychiatry; 1995; 33(3-4):215-27. PubMed ID: 8729177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis.
    Alexianu ME; Ho BK; Mohamed AH; La Bella V; Smith RG; Appel SH
    Ann Neurol; 1994 Dec; 36(6):846-58. PubMed ID: 7998770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of monoclonal immunoglobulins in serum of patients with amyotrophic lateral sclerosis.
    Duarte F; Binet S; Lacomblez L; Bouche P; Preud'homme JL; Meininger V
    J Neurol Sci; 1991 Jul; 104(1):88-91. PubMed ID: 1919600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue.
    Kawamata T; Akiyama H; Yamada T; McGeer PL
    Am J Pathol; 1992 Mar; 140(3):691-707. PubMed ID: 1347673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS).
    Niebroj-Dobosz I; Dziewulska D; Janik P
    Folia Neuropathol; 2006; 44(3):191-6. PubMed ID: 17039414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis.
    Engelhardt JI; Tajti J; Appel SH
    Arch Neurol; 1993 Jan; 50(1):30-6. PubMed ID: 8093428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation.
    Sta M; Sylva-Steenland RM; Casula M; de Jong JM; Troost D; Aronica E; Baas F
    Neurobiol Dis; 2011 Jun; 42(3):211-20. PubMed ID: 21220013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival.
    Chiot A; Zaïdi S; Iltis C; Ribon M; Berriat F; Schiaffino L; Jolly A; de la Grange P; Mallat M; Bohl D; Millecamps S; Seilhean D; Lobsiger CS; Boillée S
    Nat Neurosci; 2020 Nov; 23(11):1339-1351. PubMed ID: 33077946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Two autopsy cases of sporadic amyotrophic lateral sclerosis with 20-year-clinical course without respirators].
    Kato S; Oda M; Hayashi H; Komori T; Hirose K; Tanabe H; Arai N
    No To Shinkei; 1993 Mar; 45(3):267-72. PubMed ID: 8323821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients.
    Lim GP; Backstrom JR; Cullen MJ; Miller CA; Atkinson RD; Tökés ZA
    J Neurochem; 1996 Jul; 67(1):251-9. PubMed ID: 8666998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for an early innate immune response in the motor cortex of ALS.
    Jara JH; Genç B; Stanford MJ; Pytel P; Roos RP; Weintraub S; Mesulam MM; Bigio EH; Miller RJ; Özdinler PH
    J Neuroinflammation; 2017 Jun; 14(1):129. PubMed ID: 28651542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons.
    Engelhardt JI; Siklós L; Kömüves L; Smith RG; Appel SH
    Synapse; 1995 Jul; 20(3):185-99. PubMed ID: 7570350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients.
    Shibata N; Nagai R; Uchida K; Horiuchi S; Yamada S; Hirano A; Kawaguchi M; Yamamoto T; Sasaki S; Kobayashi M
    Brain Res; 2001 Oct; 917(1):97-104. PubMed ID: 11602233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS).
    Niebrój-Dobosz I; Dziewulska D; Kwieciński H
    Folia Neuropathol; 2004; 42(3):151-6. PubMed ID: 15535033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.
    de Munck E; Muñoz-Sáez E; Miguel BG; Solas MT; Ojeda I; Martínez A; Gil C; Arahuetes RM
    Environ Toxicol Pharmacol; 2013 Sep; 36(2):243-255. PubMed ID: 23688553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel alpha 1 subunit.
    Kimura F; Smith RG; Delbono O; Nyormoi O; Schneider T; Nastainczyk W; Hofmann F; Stefani E; Appel SH
    Ann Neurol; 1994 Feb; 35(2):164-71. PubMed ID: 8109897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis.
    Troost D; Van den Oord JJ; Vianney de Jong JM
    Neuropathol Appl Neurobiol; 1990 Oct; 16(5):401-10. PubMed ID: 2263315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autoradiography with [3H]PK11195 of spinal tract degeneration in amyotrophic lateral sclerosis.
    Sitte HH; Wanschitz J; Budka H; Berger ML
    Acta Neuropathol; 2001 Feb; 101(2):75-8. PubMed ID: 11271375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients.
    Munoz DG; Greene C; Perl DP; Selkoe DJ
    J Neuropathol Exp Neurol; 1988 Jan; 47(1):9-18. PubMed ID: 3334727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.