These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 21229166)
1. Energetics and dynamics of exciton-exciton interactions in compound colloidal semiconductor quantum dots. Deutsch Z; Avidan A; Pinkas I; Oron D Phys Chem Chem Phys; 2011 Feb; 13(8):3210-9. PubMed ID: 21229166 [TBL] [Abstract][Full Text] [Related]
2. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots. Philbin JP; Rabani E J Phys Chem Lett; 2020 Jul; 11(13):5132-5138. PubMed ID: 32513003 [TBL] [Abstract][Full Text] [Related]
3. Spectral and dynamic properties of excitons and biexcitons in type-II semiconductor nanocrystals. Ivanov SA; Achermann M ACS Nano; 2010 Oct; 4(10):5994-6000. PubMed ID: 20873722 [TBL] [Abstract][Full Text] [Related]
4. Single-exciton optical gain in semiconductor nanocrystals. Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678 [TBL] [Abstract][Full Text] [Related]
5. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
6. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Li Q; Lian T Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164 [TBL] [Abstract][Full Text] [Related]
7. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
8. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. Makarov NS; Guo S; Isaienko O; Liu W; Robel I; Klimov VI Nano Lett; 2016 Apr; 16(4):2349-62. PubMed ID: 26882294 [TBL] [Abstract][Full Text] [Related]
9. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law". Li Q; Lian T Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671 [TBL] [Abstract][Full Text] [Related]
10. State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots. Sewall SL; Cooney RR; Anderson KE; Dias EA; Sagar DM; Kambhampati P J Chem Phys; 2008 Aug; 129(8):084701. PubMed ID: 19044835 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots. Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562 [TBL] [Abstract][Full Text] [Related]
13. Auger recombination of biexcitons and negative and positive trions in individual quantum dots. Park YS; Bae WK; Pietryga JM; Klimov VI ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861 [TBL] [Abstract][Full Text] [Related]
14. Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals. Grivas C; Li C; Andreakou P; Wang P; Ding M; Brambilla G; Manna L; Lagoudakis P Nat Commun; 2013; 4():2376. PubMed ID: 23974520 [TBL] [Abstract][Full Text] [Related]
15. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots. Kaniber M; Huck MF; Müller K; Clark EC; Troiani F; Bichler M; Krenner HJ; Finley JJ Nanotechnology; 2011 Aug; 22(32):325202. PubMed ID: 21772067 [TBL] [Abstract][Full Text] [Related]