These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 21229166)

  • 21. Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics.
    Veilleux V; Lachance-Quirion D; Doré K; Landry DB; Charette PG; Allen CN
    Nanotechnology; 2010 Apr; 21(13):134024. PubMed ID: 20208106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
    Dang C; Lee J; Breen C; Steckel JS; Coe-Sullivan S; Nurmikko A
    Nat Nanotechnol; 2012 Apr; 7(5):335-9. PubMed ID: 22543426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carrier relaxation dynamics in lead sulfide colloidal quantum dots.
    Istrate E; Hoogland S; Sukhovatkin V; Levina L; Myrskog S; Smith PW; Sargent EH
    J Phys Chem B; 2008 Mar; 112(10):2757-60. PubMed ID: 18275180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical control of biexciton Auger recombination in single CdSe/CdS nanocrystals.
    Tang Y; Qin Q; Yang H; Feng S; Zhang C; Zhang J; Xiao M; Wang X
    Nanoscale; 2022 May; 14(20):7674-7681. PubMed ID: 35548946
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Shells Boost the Optical Gain of Lasing Media.
    Cassidy J; Diroll BT; Mondal N; Berkinsky DB; Zhao K; Harankahage D; Porotnikov D; Gately R; Khon D; Proppe A; Bawendi MG; Schaller RD; Malko AV; Zamkov M
    ACS Nano; 2022 Feb; 16(2):3017-3026. PubMed ID: 35129951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics within the exciton fine structure of colloidal CdSe quantum dots.
    Huxter VM; Kovalevskij V; Scholes GD
    J Phys Chem B; 2005 Nov; 109(43):20060-3. PubMed ID: 16853592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots.
    De Geyter B; Justo Y; Moreels I; Lambert K; Smet PF; Van Thourhout D; Houtepen AJ; Grodzinska D; de Mello Donega C; Meijerink A; Vanmaekelbergh D; Hens Z
    ACS Nano; 2011 Jan; 5(1):58-66. PubMed ID: 21189031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-Hole Correlations Govern Auger Recombination in Nanostructures.
    Philbin JP; Rabani E
    Nano Lett; 2018 Dec; 18(12):7889-7895. PubMed ID: 30403875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core/Shell semiconductor nanocrystals.
    Reiss P; Protière M; Li L
    Small; 2009 Feb; 5(2):154-68. PubMed ID: 19153991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence.
    Schaller RD; Sykora M; Jeong S; Klimov VI
    J Phys Chem B; 2006 Dec; 110(50):25332-8. PubMed ID: 17165979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Excitons and Biexciton Dynamics in Single CsPbBr
    Li B; Huang H; Zhang G; Yang C; Guo W; Chen R; Qin C; Gao Y; Biju VP; Rogach AL; Xiao L; Jia S
    J Phys Chem Lett; 2018 Dec; 9(24):6934-6940. PubMed ID: 30484306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heralded Spectroscopy Reveals Exciton-Exciton Correlations in Single Colloidal Quantum Dots.
    Lubin G; Tenne R; Ulku AC; Antolovic IM; Burri S; Karg S; Yallapragada VJ; Bruschini C; Charbon E; Oron D
    Nano Lett; 2021 Aug; 21(16):6756-6763. PubMed ID: 34398604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An all-optical quantum gate in a semiconductor quantum dot.
    Li X; Wu Y; Steel D; Gammon D; Stievater TH; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Science; 2003 Aug; 301(5634):809-11. PubMed ID: 12907794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auger-Limited Carrier Recombination and Relaxation in CdSe Colloidal Quantum Wells.
    Baghani E; O'Leary SK; Fedin I; Talapin DV; Pelton M
    J Phys Chem Lett; 2015 Mar; 6(6):1032-6. PubMed ID: 26262865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exciton dissociation dynamics in model donor-acceptor polymer heterojunctions. I. Energetics and spectra.
    Bittner ER; Ramon JG; Karabunarliev S
    J Chem Phys; 2005 Jun; 122(21):214719. PubMed ID: 15974774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exciton scattering model for carrier multiplication in semiconductor nanocrystals: theory.
    Piryatinski A; Velizhanin KA
    J Chem Phys; 2010 Aug; 133(8):084508. PubMed ID: 20815581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.