These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21229369)

  • 21. Antioxidant potential of glutathione: a theoretical study.
    Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant Properties of Kynurenines: Density Functional Theory Calculations.
    Zhuravlev AV; Zakharov GA; Shchegolev BF; Savvateeva-Popova EV
    PLoS Comput Biol; 2016 Nov; 12(11):e1005213. PubMed ID: 27861556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A density functional theory study on pelargonidin.
    Estévez L; Mosquera RA
    J Phys Chem A; 2007 Nov; 111(43):11100-9. PubMed ID: 17929785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the DFT study.
    Çakmak E; Özbakır Işın D
    J Mol Model; 2020 Apr; 26(5):98. PubMed ID: 32279127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two Theorems and Important Insight on How the Preferred Mechanism of Free Radical Scavenging Cannot Be Settled. Comment on Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.
    Bâldea I
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure, antioxidative potency and potential scavenging of OH and OOH of phenylethyl-3,4-dihydroxyhydrocinnamate in protic and aprotic media: DFT study.
    Holtomo O; Nsangou M; Fifen JJ; Motapon O
    J Mol Graph Model; 2017 Nov; 78():221-233. PubMed ID: 29101851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the mechanism of action of lycopene as a hydroxyl radical scavenger.
    Prasad AK; Mishra PC
    J Mol Model; 2014 May; 20(5):2233. PubMed ID: 24777316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between the radical-scavenging activity of selected flavonols and thermodynamic parameters calculated by density functional theory.
    Nakanishi I; Ohkubo K; Shoji Y; Fujitaka Y; Shimoda K; Matsumoto KI; Fukuhara K; Hamada H
    Free Radic Res; 2020 Jul; 54(7):535-539. PubMed ID: 32838569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form.
    Yadav A; Mishra PC
    J Mol Model; 2013 Feb; 19(2):767-77. PubMed ID: 23053011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms.
    Amić A; Marković Z; Dimitrić Marković JM; Stepanić V; Lučić B; Amić D
    Food Chem; 2014; 152():578-85. PubMed ID: 24444978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational study of the structure-free radical scavenging relationship of procyanidins.
    Mendoza-Wilson AM; Castro-Arredondo SI; Balandrán-Quintana RR
    Food Chem; 2014 Oct; 161():155-61. PubMed ID: 24837934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the radical scavenging activity of isoflavones: thermodynamics of O-H bond cleavage.
    Lengyel J; Rimarčík J; Vagánek A; Klein E
    Phys Chem Chem Phys; 2013 Jul; 15(26):10895-903. PubMed ID: 23698223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational and NBO studies of serotonin as a radical scavenger. Changes induced by the OH group.
    Lobayan RM; Schmit MCP
    J Mol Graph Model; 2018 Mar; 80():224-237. PubMed ID: 29414042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin.
    Shieh DE; Liu LT; Lin CC
    Anticancer Res; 2000; 20(5A):2861-5. PubMed ID: 11062694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Why Ortho- and Para-Hydroxy Metabolites Can Scavenge Free Radicals That the Parent Atorvastatin Cannot? Important Pharmacologic Insight from Quantum Chemistry.
    Bâldea I
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scavenging mechanism of curcumin toward the hydroxyl radical: a theoretical study of reactions producing ferulic acid and vanillin.
    Agnihotri N; Mishra PC
    J Phys Chem A; 2011 Dec; 115(49):14221-32. PubMed ID: 22035040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix.
    Woźniak D; Dryś A; Matkowski A
    Nat Prod Res; 2015; 29(16):1567-70. PubMed ID: 25427178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones.
    Lemańska K; Szymusiak H; Tyrakowska B; Zieliński R; Soffers AE; Rietjens IM
    Free Radic Biol Med; 2001 Oct; 31(7):869-81. PubMed ID: 11585705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.