BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21229377)

  • 21. Effect of 2-deoxy-D-glucose on gellan gum biosynthesis by Sphingomonas paucimobilis.
    Zhu G; Guo N; Yong Y; Xiong Y; Tong Q
    Bioprocess Biosyst Eng; 2019 May; 42(5):897-900. PubMed ID: 30671627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous.
    Verdoes JC; Misawa N; van Ooyen AJ
    Biotechnol Bioeng; 1999 Jun; 63(6):750-5. PubMed ID: 10397832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis.
    Chamovitz D; Sandmann G; Hirschberg J
    J Biol Chem; 1993 Aug; 268(23):17348-53. PubMed ID: 8349618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design.
    Arockiasamy S; Banik RM
    J Biosci Bioeng; 2008 Mar; 105(3):204-10. PubMed ID: 18397769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene.
    Harada J; Nagashima KV; Takaichi S; Misawa N; Matsuura K; Shimada K
    Plant Cell Physiol; 2001 Oct; 42(10):1112-8. PubMed ID: 11673627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cost-effective optimization of gellan gum production by
    Huang J; Zhu S; Li C; Zhang C; Ji Y
    Prep Biochem Biotechnol; 2020; 50(2):191-197. PubMed ID: 31738649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A single desaturase gene from red yeast Sporidiobolus pararoseus is responsible for both four- and five-step dehydrogenation of phytoene.
    Li C; Zhang N; Song J; Wei N; Li B; Zou H; Han X
    Gene; 2016 Sep; 590(1):169-76. PubMed ID: 27346167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic Engineering of
    Jeong SW; Kang CK; Choi YJ
    J Microbiol Biotechnol; 2018 Oct; 28(10):1691-1699. PubMed ID: 30178642
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis.
    Zhang J; Dong YC; Fan LL; Jiao ZH; Chen QH
    Carbohydr Polym; 2015 Jan; 115():694-700. PubMed ID: 25439950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway.
    Bartley GE; Viitanen PV; Pecker I; Chamovitz D; Hirschberg J; Scolnik PA
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6532-6. PubMed ID: 1862081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new strategy to enhance gellan production by two-stage culture in Sphingomonas paucimobilis.
    Zhu G; Sheng L; Tong Q
    Carbohydr Polym; 2013 Oct; 98(1):829-34. PubMed ID: 23987418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gellan gum biosynthetic genes gelC and gelE encode two separate polypeptides homologous to the activator and the kinase domains of tyrosine autokinases.
    Moreira LM; Hoffmann K; Albano H; Becker A; Niehaus K; Sá-Correia I
    J Mol Microbiol Biotechnol; 2004; 8(1):43-57. PubMed ID: 15741740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gellan gum.
    Giavasis I; Harvey LM; McNeil B
    Crit Rev Biotechnol; 2000; 20(3):177-211. PubMed ID: 11039329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Sphingomonas sp.: an important microbial resource for biopolymer synthesis].
    Huang H; Liu Y; Liu R
    Wei Sheng Wu Xue Bao; 2009 May; 49(5):560-6. PubMed ID: 19637560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome sequence of the welan gum-producing strain Sphingomonas sp. ATCC 31555.
    Wang X; Tao F; Gai Z; Tang H; Xu P
    J Bacteriol; 2012 Nov; 194(21):5989-90. PubMed ID: 23045500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461.
    Wang X; Yuan Y; Wang K; Zhang D; Yang Z; Xu P
    J Biotechnol; 2007 Feb; 128(2):403-7. PubMed ID: 17069918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology.
    Banik RM; Santhiagu A; Upadhyay SN
    Bioresour Technol; 2007 Mar; 98(4):792-7. PubMed ID: 16707262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of welan gum production in Sphingomonas sp. HT-1 via heterologous expression of Vitreoscilla hemoglobin gene.
    Liu X; Zhu P; Jiang R; Wu L; Feng X; Li S; Xu H
    Carbohydr Polym; 2017 Jan; 156():135-142. PubMed ID: 27842807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels.
    Banik RM; Santhiagu A
    Biotechnol Lett; 2006 Sep; 28(17):1347-50. PubMed ID: 16820976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and characterization of a phytoene dehydrogenase gene from marine yeast Rhodosporidium diobovatum.
    Guo W; Liu Y; Yan X; Liu M; Tang H; Liu Z; Zhang L
    Antonie Van Leeuwenhoek; 2015 Apr; 107(4):1017-27. PubMed ID: 25627014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.