BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21229379)

  • 1. Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens.
    Capel CS; de Souza AC; de Carvalho TC; de Sousa JP; Ambrósio SR; Martins CH; Cunha WR; Galán RH; Furtado NA
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1493-8. PubMed ID: 21229379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial hydroxylation and glycosidation of oleanolic acid by
    Yan S; Lin H; Huang H; Yang M; Xu B; Chen G
    Nat Prod Res; 2019 Jul; 33(13):1849-1855. PubMed ID: 29842789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of 3-oxo-oleanolic acid by Absidia glauca.
    Guo N; Zhao Y; Fang WS
    Planta Med; 2010 Nov; 76(16):1904-7. PubMed ID: 20549595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbe-mediate transformation of echinocystic acid by whole cells of filamentous fungus Cunninghamella blakesleana CGMCC 3.910.
    Fu S; Feng X; Sun DA
    Mol Biol Rep; 2018 Dec; 45(6):2795-2800. PubMed ID: 30194559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformation of hederagenin by Cunninghamella echinulate, Mucor subtilissimus, and Pseudomonas oleovorans.
    Liu Z; Lu YH; Feng X; Zou YX; Diao Z; Chu ZY
    J Asian Nat Prod Res; 2017 Jul; 19(7):712-718. PubMed ID: 27666872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity.
    Fu SB; Yang JS; Cui JL; Sun DA
    Fitoterapia; 2013 Apr; 86():123-8. PubMed ID: 23425601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial transformation of oleanolic acid by Trichothecium roseum.
    Gong T; Zheng L; Zhen X; He HX; Zhu HX; Zhu P
    J Asian Nat Prod Res; 2014; 16(4):383-6. PubMed ID: 24506295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliata.
    Wang J; Ren H; Xu QL; Zhou ZY; Wu P; Wei XY; Cao Y; Chen XX; Tan JW
    Food Chem; 2015 Feb; 168():623-9. PubMed ID: 25172756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of betulinic and betulonic acids by fungi.
    Bastos DZ; Pimentel IC; de Jesus DA; de Oliveira BH
    Phytochemistry; 2007 Mar; 68(6):834-9. PubMed ID: 17258248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 21beta-Hydroxy-oleanane-type triterpenes from Hippocratea excelsa.
    Cáceres-Castillo D; Mena-Rejón GJ; Cedillo-Rivera R; Quijano L
    Phytochemistry; 2008 Feb; 69(4):1057-64. PubMed ID: 18061220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial transformation of ursolic acid by Syncephalastrum racemosum (Cohn) Schroter AS 3.264.
    Huang FX; Yang WZ; Ye F; Tian JY; Hu HB; Feng LM; Guo DA; Ye M
    Phytochemistry; 2012 Oct; 82():56-60. PubMed ID: 22800913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two new echinocystic acid derivatives catalyzed by filamentous fungus
    Fu SB; Feng X; Meng QF; Cai Q; Sun DA
    Nat Prod Res; 2019 Jul; 33(13):1842-1848. PubMed ID: 29842795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New oleanene glycosides from the leaves of Acanthopanax japonicus.
    Park SY; Yook CS; Nohara T
    Chem Pharm Bull (Tokyo); 2005 Sep; 53(9):1147-51. PubMed ID: 16141585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of oleanolic and maslinic acids by Rhizomucor miehei.
    Martinez A; Rivas F; Perojil A; Parra A; Garcia-Granados A; Fernandez-Vivas A
    Phytochemistry; 2013 Oct; 94():229-37. PubMed ID: 23790643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi.
    Liu DL; Liu Y; Qiu F; Gao Y; Zhang JZ
    J Asian Nat Prod Res; 2011 Feb; 13(2):160-7. PubMed ID: 21279880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformation of oleanolic acid by Fusarium lini and alpha-glucosidase inhibitory activity of its transformed products.
    Choudhary MI; Batool I; Khan SN; Sultana N; Shah SA; Ur-Rahman A
    Nat Prod Res; 2008 Apr; 22(6):489-94. PubMed ID: 18415855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotransformation of oleanolic and maslinic methyl esters by Rhizomucor miehei CECT 2749.
    Martinez A; Perojil A; Rivas F; Parra A; Garcia-Granados A; Fernandez-Vivas A
    Phytochemistry; 2015 Sep; 117():500-508. PubMed ID: 26232553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-synthesis of new antimicrobial esters from the natural oleanolic and maslinic acids.
    Chouaïb K; Hichri F; Nguir A; Daami-Remadi M; Elie N; Touboul D; Ben Jannet H; Hamza MA
    Food Chem; 2015 Sep; 183():8-17. PubMed ID: 25863603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic biotransformation of terpenes as bioactive agents.
    Sultana N; Saify ZS
    J Enzyme Inhib Med Chem; 2013 Dec; 28(6):1113-28. PubMed ID: 23046385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation of lantadene A (22 beta-angeloyloxy-3-oxoolean-12-en-28-oic acid), the pentacyclic triterpenoid, by Alcaligenes faecalis.
    Singh A; Sharma OP; Dawra RK; Kanwar SS; Mahato SB
    Biodegradation; 1999; 10(5):373-81. PubMed ID: 10870553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.