These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21229410)

  • 1. Permeability study of vertebral cancellous bone using micro-computational fluid dynamics.
    Teo JC; Teoh SH
    Comput Methods Biomech Biomed Engin; 2012; 15(4):417-23. PubMed ID: 21229410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical investigation of directional permeability of human vertebral cancellous bone for cement infiltration.
    Baroud G; Falk R; Crookshank M; Sponagel S; Steffen T
    J Biomech; 2004 Feb; 37(2):189-96. PubMed ID: 14706321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability studies of artificial and natural cancellous bone structures.
    Syahrom A; Abdul Kadir MR; Abdullah J; Öchsner A
    Med Eng Phys; 2013 Jun; 35(6):792-9. PubMed ID: 22959618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and properties of 3D scaffolds for bone tissue engineering.
    Gómez S; Vlad MD; López J; Fernández E
    Acta Biomater; 2016 Sep; 42():341-350. PubMed ID: 27370904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the interrelationship of permeability and structural parameters of vertebral trabecular bone: a parametric computational study.
    Widmer RP; Ferguson SJ
    Comput Methods Biomech Biomed Engin; 2013; 16(8):908-22. PubMed ID: 22288891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of continuum and micro-structural properties of human vertebral cancellous bone using combined cellular solid models.
    Sander EA; Shimko DA; Dee KC; Nauman EA
    Biomech Model Mechanobiol; 2003 Nov; 2(2):97-107. PubMed ID: 14586811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Permeability study of cancellous bone and its idealised structures.
    Syahrom A; Abdul Kadir MR; Harun MN; Öchsner A
    Med Eng Phys; 2015 Jan; 37(1):77-86. PubMed ID: 25523865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic open cell foams versus a healthy human vertebra: Anisotropy, fluid flow and μ-CT structural studies.
    Gómez González S; Valera Jiménez JF; Cabestany Bastida G; Vlad MD; López López J; Fernández Aguado E
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110404. PubMed ID: 31923939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison and verification of computational methods to determine the permeability of vertebral trabecular bone.
    Widmer RP; Ferguson SJ
    Proc Inst Mech Eng H; 2013 Jun; 227(6):617-28. PubMed ID: 23636744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc.
    Malandrino A; Lacroix D; Hellmich C; Ito K; Ferguson SJ; Noailly J
    Osteoarthritis Cartilage; 2014 Jul; 22(7):1053-60. PubMed ID: 24857972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics simulation from microCT stacks of commercial biomaterials usable for bone grafting.
    Chappard D; Kün-Darbois JD; Guillaume B
    Micron; 2020 Jun; 133():102861. PubMed ID: 32146253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis.
    Debbaut C; Vierendeels J; Casteleyn C; Cornillie P; Van Loo D; Simoens P; Van Hoorebeke L; Monbaliu D; Segers P
    J Biomech Eng; 2012 Jan; 134(1):011003. PubMed ID: 22482658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of microstructure and volume fraction in predicting failure in cancellous bone.
    Nazarian A; Stauber M; Zurakowski D; Snyder BD; Müller R
    Bone; 2006 Dec; 39(6):1196-202. PubMed ID: 16920051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore-scale analysis of Newtonian flow in the explicit geometry of vertebral trabecular bones using lattice Boltzmann simulation.
    Zeiser T; Bashoor-Zadeh M; Darabi A; Baroud G
    Proc Inst Mech Eng H; 2008 Feb; 222(2):185-94. PubMed ID: 18441754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical role of peri-implant cancellous bone architecture.
    Matsunaga S; Shirakura Y; Ohashi T; Nakahara K; Tamatsu Y; Takano N; Ide Y
    Int J Prosthodont; 2010; 23(4):333-8. PubMed ID: 20617221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.