These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 21229464)

  • 21. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.
    Nam YS; Park TG
    J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems.
    Hu Y; Grainger DW; Winn SR; Hollinger JO
    J Biomed Mater Res; 2002 Mar; 59(3):563-72. PubMed ID: 11774315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.
    Kasoju N; Kubies D; Sedlačík T; Janoušková O; Koubková J; Kumorek MM; Rypáček F
    Biomed Mater; 2016 Jan; 11(1):015002. PubMed ID: 26752658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.
    Safinia L; Mantalaris A; Bismarck A
    Langmuir; 2006 Mar; 22(7):3235-42. PubMed ID: 16548583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.
    Maquet V; Boccaccini AR; Pravata L; Notingher I; Jérôme R
    Biomaterials; 2004 Aug; 25(18):4185-94. PubMed ID: 15046908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation.
    Zhu X; Zhong T; Huang R; Wan A
    J Biomater Sci Polym Ed; 2015; 26(17):1286-96. PubMed ID: 26324121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size.
    Ghosh S; Gutierrez V; Fernández C; Rodriguez-Perez MA; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):950-9. PubMed ID: 18331817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite.
    Wang X; Song G; Lou T
    J Mater Sci Mater Med; 2010 Jan; 21(1):183-8. PubMed ID: 19705258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of modified nanofibrous poly(L-lactic acid) scaffolds by thermally induced phase separation technique and aminolysis for promoting cyctocompatibility.
    Chen S; He Z; Xu G; Xiao X
    J Biomater Sci Polym Ed; 2016 Jul; 27(10):1058-68. PubMed ID: 27095503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3-D PLLA scaffolds formation by a supercritical freeze extraction assisted process.
    Cardea S; Baldino L; Pisanti P; Reverchon E
    J Mater Sci Mater Med; 2014 Feb; 25(2):355-62. PubMed ID: 24129832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology.
    Teng X; Ren J; Gu S
    J Biomed Mater Res B Appl Biomater; 2007 Apr; 81(1):185-93. PubMed ID: 16924605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous poly(L-lactic acid)/apatite composites created by biomimetic process.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Jun; 45(4):285-93. PubMed ID: 10321700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation.
    Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering.
    Ma Z; Gao C; Gong Y; Shen J
    J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):610-7. PubMed ID: 14528458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.