These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Ren L; Pandit V; Elkin J; Denman T; Cooper JA; Kotha SP Nanoscale; 2013 Mar; 5(6):2337-45. PubMed ID: 23392606 [TBL] [Abstract][Full Text] [Related]
43. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. Lv Q; Nair L; Laurencin CT J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184 [TBL] [Abstract][Full Text] [Related]
44. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Wang X; Song G; Lou T Med Eng Phys; 2010 May; 32(4):391-7. PubMed ID: 20189867 [TBL] [Abstract][Full Text] [Related]
45. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. Dorj B; Won JE; Purevdorj O; Patel KD; Kim JH; Lee EJ; Kim HW Acta Biomater; 2014 Mar; 10(3):1238-50. PubMed ID: 24239677 [TBL] [Abstract][Full Text] [Related]
46. The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams. Chen VJ; Ma PX Biomaterials; 2006 Jul; 27(20):3708-15. PubMed ID: 16519935 [TBL] [Abstract][Full Text] [Related]
47. Layered open pore poly(L-lactic acid) nanomorphology. Liao X; Nawaby AV; Whitfield P; Day M; Champagne M; Denault J Biomacromolecules; 2006 Nov; 7(11):2937-41. PubMed ID: 17096516 [TBL] [Abstract][Full Text] [Related]
48. A biodegradable vascularizing membrane: a feasibility study. Kaushiva A; Turzhitsky VM; Darmoc M; Backman V; Ameer GA Acta Biomater; 2007 Sep; 3(5):631-42. PubMed ID: 17507300 [TBL] [Abstract][Full Text] [Related]
49. Polymeric scaffolds prepared via thermally induced phase separation: tuning of structure and morphology. Pavia FC; La Carrubba V; Piccarolo S; Brucato V J Biomed Mater Res A; 2008 Aug; 86(2):459-66. PubMed ID: 17975822 [TBL] [Abstract][Full Text] [Related]
50. Bionic electrospun ultrafine fibrous poly(L-lactic acid) scaffolds with a multi-scale structure. Zhang K; Wang X; Jing D; Yang Y; Zhu M Biomed Mater; 2009 Jun; 4(3):035004. PubMed ID: 19439825 [TBL] [Abstract][Full Text] [Related]
51. Synthetic nano-scale fibrous extracellular matrix. Ma PX; Zhang R J Biomed Mater Res; 1999 Jul; 46(1):60-72. PubMed ID: 10357136 [TBL] [Abstract][Full Text] [Related]
52. Morphology control in co-continuous poly(L-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(L-lactide) materials. Sarazin P; Favis BD Biomacromolecules; 2003; 4(6):1669-79. PubMed ID: 14606894 [TBL] [Abstract][Full Text] [Related]
53. Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. Gong Y; Ma Z; Zhou Q; Li J; Gao C; Shen J J Biomater Sci Polym Ed; 2008; 19(2):207-21. PubMed ID: 18237493 [TBL] [Abstract][Full Text] [Related]
54. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
55. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Thomson RC; Yaszemski MJ; Powers JM; Mikos AG Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527 [TBL] [Abstract][Full Text] [Related]
56. Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering. Carfì Pavia F; La Carrubba V; Brucato V; Palumbo FS; Giammona G Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():301-8. PubMed ID: 24907764 [TBL] [Abstract][Full Text] [Related]
57. Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (TIPS) technique. Carfì Pavia F; Palumbo FS; La Carrubba V; Bongiovì F; Brucato V; Pitarresi G; Giammona G Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():561-569. PubMed ID: 27287155 [TBL] [Abstract][Full Text] [Related]
58. [Preparation and degradation of poly(DL-lactide)/calcium phosphates porous scaffolds]. Quan D; Liao K; Luo B; Lu Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):174-7. PubMed ID: 15143533 [TBL] [Abstract][Full Text] [Related]
59. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Wei G; Ma PX Biomaterials; 2009 Nov; 30(32):6426-34. PubMed ID: 19699518 [TBL] [Abstract][Full Text] [Related]
60. Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). Zeinali R; Del Valle LJ; Torras J; Puiggalí J Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33800709 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]