These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 21229611)
41. Selective suppression of lymphomas by functional loss of Hsf1 in a p53-deficient mouse model for spontaneous tumors. Min JN; Huang L; Zimonjic DB; Moskophidis D; Mivechi NF Oncogene; 2007 Aug; 26(35):5086-97. PubMed ID: 17310987 [TBL] [Abstract][Full Text] [Related]
42. Nuclear stress bodies: Interaction of its components in oncogenic regulation. Chatterjee M; Dass J FP; Sengupta S J Cell Biochem; 2019 Sep; 120(9):14700-14710. PubMed ID: 31090102 [TBL] [Abstract][Full Text] [Related]
43. Microtubule-interacting drugs induce moderate and reversible damage to human bone marrow mesenchymal stem cells. Polioudaki H; Kastrinaki MC; Papadaki HA; Theodoropoulos PA Cell Prolif; 2009 Aug; 42(4):434-47. PubMed ID: 19486015 [TBL] [Abstract][Full Text] [Related]
44. Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. Galigniana MD; Harrell JM; O'Hagen HM; Ljungman M; Pratt WB J Biol Chem; 2004 May; 279(21):22483-9. PubMed ID: 15004035 [TBL] [Abstract][Full Text] [Related]
45. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Arachchige Don AS; Dallapiazza RF; Bennin DA; Brake T; Cowan CE; Horne MC Exp Cell Res; 2006 Dec; 312(20):4181-204. PubMed ID: 17123511 [TBL] [Abstract][Full Text] [Related]
46. [Immortalization of embryonic fibroblasts in heat shock transcription factor 1 knockout mouse]. Liu MD; Zhang HL; Gong HY; Chen GW; Wang KK; Shun-mei E; Xiao XZ Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2006 Apr; 31(2):174-7. PubMed ID: 16706109 [TBL] [Abstract][Full Text] [Related]
47. Heat-shock cognate 70 is required for the activation of heat-shock factor 1 in mammalian cells. Ahn SG; Kim SA; Yoon JH; Vacratsis P Biochem J; 2005 Nov; 392(Pt 1):145-52. PubMed ID: 16050811 [TBL] [Abstract][Full Text] [Related]
48. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Jolly C; Usson Y; Morimoto RI Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6769-74. PubMed ID: 10359787 [TBL] [Abstract][Full Text] [Related]
49. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. Xie Y; Chen C; Stevenson MA; Auron PE; Calderwood SK J Biol Chem; 2002 Apr; 277(14):11802-10. PubMed ID: 11801594 [TBL] [Abstract][Full Text] [Related]
50. Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine. Rathinasamy K; Jindal B; Asthana J; Singh P; Balaji PV; Panda D BMC Cancer; 2010 May; 10():213. PubMed ID: 20482847 [TBL] [Abstract][Full Text] [Related]
51. Simian virus 40 large T antigen and p53 are microtubule-associated proteins in transformed cells. Maxwell SA; Ames SK; Sawai ET; Decker GL; Cook RG; Butel JS Cell Growth Differ; 1991 Feb; 2(2):115-27. PubMed ID: 1648952 [TBL] [Abstract][Full Text] [Related]
52. Identification of Daxx interacting with p73, one of the p53 family, and its regulation of p53 activity by competitive interaction with PML. Kim EJ; Park JS; Um SJ Nucleic Acids Res; 2003 Sep; 31(18):5356-67. PubMed ID: 12954772 [TBL] [Abstract][Full Text] [Related]
53. Heat shock transcription factor 1 binds selectively in vitro to Ku protein and the catalytic subunit of the DNA-dependent protein kinase. Huang J; Nueda A; Yoo S; Dynan WS J Biol Chem; 1997 Oct; 272(41):26009-16. PubMed ID: 9325337 [TBL] [Abstract][Full Text] [Related]
54. Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. Takaki E; Fujimoto M; Nakahari T; Yonemura S; Miyata Y; Hayashida N; Yamamoto K; Vallee RB; Mikuriya T; Sugahara K; Yamashita H; Inouye S; Nakai A J Biol Chem; 2007 Dec; 282(51):37285-92. PubMed ID: 17965413 [TBL] [Abstract][Full Text] [Related]
55. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. Kim HJ; Lee JJ; Cho JH; Jeong J; Park AY; Kang W; Lee KJ J Biol Chem; 2017 Aug; 292(31):12801-12812. PubMed ID: 28592492 [TBL] [Abstract][Full Text] [Related]
56. Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes. Heydari AR; You S; Takahashi R; Gutsmann-Conrad A; Sarge KD; Richardson A Exp Cell Res; 2000 Apr; 256(1):83-93. PubMed ID: 10739655 [TBL] [Abstract][Full Text] [Related]
57. A small molecule-directed approach to control protein localization and function. Geda P; Patury S; Ma J; Bharucha N; Dobry CJ; Lawson SK; Gestwicki JE; Kumar A Yeast; 2008 Aug; 25(8):577-94. PubMed ID: 18668531 [TBL] [Abstract][Full Text] [Related]
58. BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress. Jin YH; Ahn SG; Kim SA Biochem Biophys Res Commun; 2015 Aug; 464(2):561-7. PubMed ID: 26159920 [TBL] [Abstract][Full Text] [Related]
59. The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Nakai A; Kawazoe Y; Tanabe M; Nagata K; Morimoto RI Mol Cell Biol; 1995 Oct; 15(10):5268-78. PubMed ID: 7565675 [TBL] [Abstract][Full Text] [Related]
60. ZBP-89 promotes growth arrest through stabilization of p53. Bai L; Merchant JL Mol Cell Biol; 2001 Jul; 21(14):4670-83. PubMed ID: 11416144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]