BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21229882)

  • 21. Evaluation of nucleotide derivatives and sugar nucleotide analogs as inhibitors of glycosyltransferases.
    Osumi K; Kawauchi N; Lu AH; Hindsgaul O; Palcic MM
    Nucleic Acids Symp Ser; 2000; (44):89-90. PubMed ID: 12903282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step synthesis of novel glycosyltransferase inhibitors.
    Evitt A; Tedaldi LM; Wagner GK
    Chem Commun (Camb); 2012 Dec; 48(97):11856-8. PubMed ID: 23125983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adducts of uridine and glycals as potential substrates for glycosyltransferases.
    Wandzik I; Bieg T
    Bioorg Chem; 2007 Oct; 35(5):401-16. PubMed ID: 17707879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new concept for glycosyltransferase inhibitors: nonionic mimics of the nucleotide donor of the human blood group B galactosyltransferase.
    Schaefer K; Albers J; Sindhuwinata N; Peters T; Meyer B
    Chembiochem; 2012 Feb; 13(3):443-50. PubMed ID: 22223604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 5-Amino-2-pyridyl 1-thioglycosides in synthesis of analogs of glycosyltransferases substrates.
    Pastuch-Gawolek G; Bieg T; Szeja W; Flasz J
    Bioorg Chem; 2009 Jun; 37(3):77-83. PubMed ID: 19464725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbohydrates and glycoconjugates: progress in non-mammalian glycosylation, glycosyltransferases, invertebrate lectins and carbohydrate-carbohydrate interactions.
    Wormald MR; Sharon N
    Curr Opin Struct Biol; 2004 Oct; 14(5):591-2. PubMed ID: 15465320
    [No Abstract]   [Full Text] [Related]  

  • 27. Selective inhibition of glycosyltransferases by bivalent imidazolium salts.
    Gao Y; Vlahakis JZ; Szarek WA; Brockhausen I
    Bioorg Med Chem; 2013 Mar; 21(5):1305-11. PubMed ID: 23375091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-activity relationships of orotidine-5'-monophosphate decarboxylase inhibitors as anticancer agents.
    Bello AM; Konforte D; Poduch E; Furlonger C; Wei L; Liu Y; Lewis M; Pai EF; Paige CJ; Kotra LP
    J Med Chem; 2009 Mar; 52(6):1648-58. PubMed ID: 19260677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of sugar-amino acid-nucleosides as potential glycosyltransferase inhibitors.
    Vembaiyan K; Pearcey JA; Bhasin M; Lowary TL; Zou W
    Bioorg Med Chem; 2011 Jan; 19(1):58-66. PubMed ID: 21167722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing replacement of pyrophosphate via click chemistry; synthesis of UDP-sugar analogues as potential glycosyl transferase inhibitors.
    Yeoh KK; Butters TD; Wilkinson BL; Fairbanks AJ
    Carbohydr Res; 2009 Mar; 344(5):586-91. PubMed ID: 19233348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 6-Substituted and 5,6-disubstituted derivatives of uridine: stereoselective synthesis, interaction with uridine phosphorylase, and in vitro antitumor activity.
    Felczak K; Drabikowska AK; Vilpo JA; Kulikowski T; Shugar D
    J Med Chem; 1996 Apr; 39(8):1720-8. PubMed ID: 8648611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of selective inhibitors for the glycosyltransferase MurG via high-throughput screening.
    Hu Y; Helm JS; Chen L; Ginsberg C; Gross B; Kraybill B; Tiyanont K; Fang X; Wu T; Walker S
    Chem Biol; 2004 May; 11(5):703-11. PubMed ID: 15157881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of active-site inhibitors of MurG using a generalizable, high-throughput glycosyltransferase screen.
    Helm JS; Hu Y; Chen L; Gross B; Walker S
    J Am Chem Soc; 2003 Sep; 125(37):11168-9. PubMed ID: 16220917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibitors designed for the active site of dihydroorotase.
    Li Y; Raushel FM
    Bioorg Chem; 2005 Dec; 33(6):470-83. PubMed ID: 16213543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of polyamine-modified uridine and adenosine derivatives--evaluation of DNA binding capacity and cytotoxicity in vitro.
    Ghatnekar J; Hägerlöf M; Oredsson S; Alm K; Elmroth SK; Persson T
    Bioorg Med Chem; 2007 Dec; 15(23):7426-33. PubMed ID: 17869123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors.
    Compain P; Martin OR
    Curr Top Med Chem; 2003; 3(5):541-60. PubMed ID: 12570865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase.
    Bello AM; Poduch E; Liu Y; Wei L; Crandall I; Wang X; Dyanand C; Kain KC; Pai EF; Kotra LP
    J Med Chem; 2008 Feb; 51(3):439-48. PubMed ID: 18189347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity and synthetic use of glycosyltransferases.
    Thiem J
    Ernst Schering Res Found Workshop; 2004; (44):75-94. PubMed ID: 14579775
    [No Abstract]   [Full Text] [Related]  

  • 39. Glycoside modification of oleanolic acid derivatives as a novel class of anti-osteoclast formation agents.
    Li JF; Chen SJ; Zhao Y; Li JX
    Carbohydr Res; 2009 Mar; 344(5):599-605. PubMed ID: 19217081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides.
    Lim EK; Ashford DA; Hou B; Jackson RG; Bowles DJ
    Biotechnol Bioeng; 2004 Sep; 87(5):623-31. PubMed ID: 15352060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.