These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21229964)

  • 1. Tunable magnetism in strained graphene with topological line defect.
    Kou L; Tang C; Guo W; Chen C
    ACS Nano; 2011 Feb; 5(2):1012-7. PubMed ID: 21229964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetism and perfect spin filtering effect in graphene nanoflakes.
    Sheng W; Ning ZY; Yang ZQ; Guo H
    Nanotechnology; 2010 Sep; 21(38):385201. PubMed ID: 20739743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gapped ferromagnetic graphene nanoribbons.
    Hou D; Wei J; Xie S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13202-6. PubMed ID: 21706114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First principles study of magnetism in nanographenes.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Sep; 127(12):124703. PubMed ID: 17902927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and electronic structure of armchair nanotubes with topological line defects.
    Okada S; Nakada K; Kawai T
    J Phys Condens Matter; 2007 Sep; 19(36):365231. PubMed ID: 21694176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half-metallic graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Nature; 2006 Nov; 444(7117):347-9. PubMed ID: 17108960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monovacancy-induced magnetism in graphene bilayers.
    Choi S; Jeong BW; Kim S; Kim G
    J Phys Condens Matter; 2008 Jun; 20(23):235220. PubMed ID: 21694311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties.
    Guan Z; Si C; Hu S; Duan W
    Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption.
    Zhang Z; Guo W
    J Am Chem Soc; 2009 May; 131(19):6874-9. PubMed ID: 19402634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-Principles Study of 3d Transition-Metal-Atom Adsorption onto Graphene Embedded with the Extended Line Defect.
    Guan Z; Ni S; Hu S
    ACS Omega; 2020 Mar; 5(11):5900-5910. PubMed ID: 32226870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of the existence of magnetism in pristine VX₂ monolayers (X = S, Se) and their strain-induced tunable magnetic properties.
    Ma Y; Dai Y; Guo M; Niu C; Zhu Y; Huang B
    ACS Nano; 2012 Feb; 6(2):1695-701. PubMed ID: 22264067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable ferromagnetism in assembled two dimensional triangular graphene nanoflakes.
    Li X; Wang Q
    Phys Chem Chem Phys; 2012 Feb; 14(6):2065-9. PubMed ID: 22234655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallicity in graphene nanoribbons with topological defects at edge.
    Bhattacharjee J
    J Chem Phys; 2012 Sep; 137(9):094705. PubMed ID: 22957584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay of structure and spin-orbit strength in the magnetism of metal-benzene sandwiches: from single molecules to infinite wires.
    Mokrousov Y; Atodiresei N; Bihlmayer G; Heinze S; Blügel S
    Nanotechnology; 2007 Dec; 18(49):495402. PubMed ID: 20442471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons.
    Kou L; Tang C; Zhang Y; Heine T; Chen C; Frauenheim T
    J Phys Chem Lett; 2012 Oct; 3(20):2934-41. PubMed ID: 26292229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.