These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21230032)

  • 1. Observation uncertainty in reversible Markov chains.
    Metzner P; Weber M; Schütte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031114. PubMed ID: 21230032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probability distributions of molecular observables computed from Markov models.
    Noé F
    J Chem Phys; 2008 Jun; 128(24):244103. PubMed ID: 18601313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data.
    Metzner P; Noé F; Schütte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021106. PubMed ID: 19792076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Registration Uncertainty With Sparse Bayesian Modelling.
    Le Folgoc L; Delingette H; Criminisi A; Ayache N
    IEEE Trans Med Imaging; 2017 Feb; 36(2):607-617. PubMed ID: 27831863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abrupt motion tracking via intensively adaptive Markov-chain Monte Carlo sampling.
    Zhou X; Lu Y; Lu J; Zhou J
    IEEE Trans Image Process; 2012 Feb; 21(2):789-801. PubMed ID: 21937350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of biomolecular conformations from incomplete torsion angle observations by hidden Markov models.
    Fischer A; Waldhausen S; Horenko I; Meerbach E; Schütte C
    J Comput Chem; 2007 Nov; 28(15):2453-64. PubMed ID: 17680553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian mixture modeling using a hybrid sampler with application to protein subfamily identification.
    Fong Y; Wakefield J; Rice K
    Biostatistics; 2010 Jan; 11(1):18-33. PubMed ID: 19696187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution.
    Trendelkamp-Schroer B; Noé F
    J Chem Phys; 2013 Apr; 138(16):164113. PubMed ID: 23635117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework.
    Angelikopoulos P; Papadimitriou C; Koumoutsakos P
    J Chem Phys; 2012 Oct; 137(14):144103. PubMed ID: 23061835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A coarse graining method for the identification of transition rates between molecular conformations.
    Kube S; Weber M
    J Chem Phys; 2007 Jan; 126(2):024103. PubMed ID: 17228939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
    Chaspari T; Tsiartas A; Tsilifis P; Narayanan S
    IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo.
    Pagel M; Meade A
    Am Nat; 2006 Jun; 167(6):808-25. PubMed ID: 16685633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probability distributions of molecular observables computed from Markov models. II. Uncertainties in observables and their time-evolution.
    Chodera JD; Noé F
    J Chem Phys; 2010 Sep; 133(10):105102. PubMed ID: 20849191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian analysis of non-homogeneous Markov chains: application to mental health data.
    Sung M; Soyer R; Nhan N
    Stat Med; 2007 Jul; 26(15):3000-17. PubMed ID: 17173342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian model selection approach for identifying differentially expressed transcripts from RNA sequencing data.
    Papastamoulis P; Rattray M
    J R Stat Soc Ser C Appl Stat; 2018 Jan; 67(1):3-23. PubMed ID: 29353941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating parameter uncertainty into Quantitative Microbial Risk Assessment (QMRA).
    Donald M; Mengersen K; Toze S; Sidhu JP; Cook A
    J Water Health; 2011 Mar; 9(1):10-26. PubMed ID: 21301111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of uncertainty-based work injury model using Bayesian structural equation modelling.
    Chatterjee S
    Int J Inj Contr Saf Promot; 2014; 21(4):318-27. PubMed ID: 24111548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variance components analysis for pedigree-based censored survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS.
    Scurrah KJ; Palmer LJ; Burton PR
    Genet Epidemiol; 2000 Sep; 19(2):127-48. PubMed ID: 10962474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation and uncertainty of reversible Markov models.
    Trendelkamp-Schroer B; Wu H; Paul F; Noé F
    J Chem Phys; 2015 Nov; 143(17):174101. PubMed ID: 26547152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.