These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21230057)

  • 1. Dynamic effect of overhangs and islands at the depinning transition in two-dimensional magnets.
    Zhou NJ; Zheng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031139. PubMed ID: 21230057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonsteady dynamic properties of a domain wall for the creep state under an alternating driving field.
    Zhou NJ; Zheng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012104. PubMed ID: 25122248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
    Roters L; Lübeck S; Usadel KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026127. PubMed ID: 12241257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
    Roters L; Lübeck S; Usadel KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):069901. PubMed ID: 12613465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonsteady dynamics at the dynamic depinning transition in the two-dimensional Gaussian random-field Ising model.
    Qian X; Yu G; Zhou N
    Phys Rev E; 2023 Jun; 107(6-1):064108. PubMed ID: 37464630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depinning phase transition in the two-dimensional clock model with quenched randomness.
    Qin XP; Zheng B; Zhou NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031129. PubMed ID: 23030888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of critical dynamics in anisotropic magnetic films with the stochastic Landau-Lifshitz-Gilbert equation.
    Jin MH; Zheng B; Xiong L; Zhou NJ; Wang L
    Phys Rev E; 2018 Aug; 98(2-1):022126. PubMed ID: 30253625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depinning transition and thermal fluctuations in the random-field Ising model.
    Roters L; Hucht A; Lübeck S; Nowak U; Usadel KD
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5202-7. PubMed ID: 11970390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edwards-Wilkinson depinning transition in random Coulomb potential background.
    Valizadeh N; Samadpour M; Hamzehpour H; Najafi MN
    Phys Rev E; 2021 Dec; 104(6-1):064140. PubMed ID: 35030907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium.
    Moglia B; Albano EV; Guisoni N
    Phys Rev E; 2016 Nov; 94(5-1):052139. PubMed ID: 27967013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: universality with respect to the stochastic dynamics.
    Buendía GM; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051108. PubMed ID: 19113096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edwards-Wilkinson depinning transition in fractional Brownian motion background.
    Valizadeh N; Hamzehpour H; Samadpour M; Najafi MN
    Sci Rep; 2023 Jul; 13(1):12300. PubMed ID: 37516759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depinning Exponents of Thin Film Domain Walls Depend on Disorder Strength.
    Skaugen A; Laurson L
    Phys Rev Lett; 2022 Mar; 128(9):097202. PubMed ID: 35302819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depinning Transition of a Domain Wall in Ferromagnetic Films.
    Xi B; Luo MB; Vinokur VM; Hu X
    Sci Rep; 2015 Sep; 5():14062. PubMed ID: 26365753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media.
    Le Doussal P; Wiese KJ
    Phys Rev Lett; 2015 Mar; 114(11):110601. PubMed ID: 25839253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal fluctuations and extreme statistics of avalanches near the depinning transition.
    LeBlanc M; Angheluta L; Dahmen K; Goldenfeld N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022126. PubMed ID: 23496478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-time dynamics for the spin-3/2 Blume-Capel model.
    Grandi BC; Figueiredo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056109. PubMed ID: 15600694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions in a simple growth model for a driven interface in random media.
    Park K; Kim Im
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3322-6. PubMed ID: 11088831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic avalanches and critical depinning of three-dimensional magnetic domain walls.
    Clemmer JT; Robbins MO
    Phys Rev E; 2019 Oct; 100(4-1):042121. PubMed ID: 31770980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.