These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21230077)

  • 1. Evidence for critical-like behavior in ultraslowing glass-forming systems.
    Drozd-Rzoska A; Rzoska SJ; Pawlus S; Martinez-Garcia JC; Tamarit JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031501. PubMed ID: 21230077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enthalpy space analysis of the evolution of the primary relaxation time in ultraslowing systems.
    Martinez Garcia JC; Tamarit JL; Rzoska SJ
    J Chem Phys; 2011 Jan; 134(2):024512. PubMed ID: 21241125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal critical-like scaling of dynamic properties in symmetry-selected glass formers.
    Drozd-Rzoska A; Rzoska SJ; Paluch M
    J Chem Phys; 2008 Nov; 129(18):184509. PubMed ID: 19045416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glassy dynamics of liquid crystalline 4(')-n-pentyl-4-cyanobiphenyl in the isotropic and supercooled nematic phases.
    Drozd-Rzoska A
    J Chem Phys; 2009 Jun; 130(23):234910. PubMed ID: 19548759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling the dynamics of orientationally disordered mixed crystals.
    Romanini M; Martinez-Garcia JC; Tamarit JL; Rzoska SJ; Barrio M; Pardo LC; Drozd-Rzoska A
    J Chem Phys; 2009 Nov; 131(18):184504. PubMed ID: 19916609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis.
    Martinez-Garcia JC; Martinez-Garcia J; Rzoska SJ; Hulliger J
    J Chem Phys; 2012 Aug; 137(6):064501. PubMed ID: 22897287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The meaning of the "universal" WLF parameters of glass-forming polymer liquids.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2015 Jan; 142(1):014905. PubMed ID: 25573581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state.
    Rault J
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):91. PubMed ID: 26314261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bond Strength-Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equation and an Application to Bulk Metallic Glass Forming Liquids.
    Ikeda M; Aniya M
    Materials (Basel); 2010 Dec; 3(12):5246-5262. PubMed ID: 28883380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).
    Ngai KL; Habasaki J
    J Chem Phys; 2014 Sep; 141(11):114502. PubMed ID: 25240359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivative-based analysis for temperature and pressure evolution of dielectric relaxation times in vitrifying liquids.
    Drozd-Rzoska A; Rzoska SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041502. PubMed ID: 16711804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.
    Popova VA; Surovtsev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corresponding states of structural glass formers. II.
    Elmatad YS; Chandler D; Garrahan JP
    J Phys Chem B; 2010 Dec; 114(51):17113-9. PubMed ID: 21138279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids.
    Senkov ON; Miracle DB
    J Chem Phys; 2008 Mar; 128(12):124508. PubMed ID: 18376944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A universal description of ultraslow glass dynamics.
    Martinez-Garcia JC; Rzoska SJ; Drozd-Rzoska A; Martinez-Garcia J
    Nat Commun; 2013; 4():1823. PubMed ID: 23652011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model.
    Casalini R; Capaccioli S; Lucchesi M; Rolla PA; Corezzi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031207. PubMed ID: 11308642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass Transition Dynamics and Crystallization Kinetics in the Smectic Liquid Crystal 4-n-Butyloxybenzylidene-4'-n'-octylaniline (BBOA).
    Jasiurkowska-Delaporte M; Napolitano S; Leys J; Juszyńska-Gałązka E; Wübbenhorst M; Massalska-Arodź M
    J Phys Chem B; 2016 Dec; 120(47):12160-12167. PubMed ID: 27809533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.