These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21230082)

  • 1. Transient nucleation with a monotonically changing barrier.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031603. PubMed ID: 21230082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent distributions in self-quenching nucleation.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031602. PubMed ID: 22060380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of the distribution of nuclei formed in a nucleation pulse: Interface-limited growth.
    Shneidman VA
    J Chem Phys; 2009 Oct; 131(16):164115. PubMed ID: 19894935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient approach to nucleation and growth dynamics: stationary diffusion flux model.
    van Putten DS; Kalikmanov VI
    J Chem Phys; 2009 Apr; 130(16):164508. PubMed ID: 19405595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "
    Shneidman VA
    Entropy (Basel); 2020 Aug; 22(9):. PubMed ID: 33286703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Igniting homogeneous nucleation.
    Neu JC; Bonilla LL; Carpio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021601. PubMed ID: 15783331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new procedure for analyzing the nucleation kinetics of freezing in computer simulation.
    Bartell LS; Wu DT
    J Chem Phys; 2006 Nov; 125(19):194503. PubMed ID: 17129119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comment on "Comparison between solutions of the general dynamic equation and the kinetic equation for nucleation and droplet growth" [J. Chem. Phys. 130, 014102 (2009)].
    Shneidman VA
    J Chem Phys; 2010 Jan; 132(4):047101; author reply 047102. PubMed ID: 20113072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nucleation using mean first-passage time data from molecular dynamics simulation.
    Nicholson DA; Rutledge GC
    J Chem Phys; 2016 Apr; 144(13):134105. PubMed ID: 27059560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics investigation of the transient regime in the freezing of salt clusters.
    Bushuev YG; Bartell LS
    J Phys Chem B; 2007 Feb; 111(7):1712-20. PubMed ID: 17263575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heating rate effects in the transient nucleation problem.
    Shneidman VA
    J Chem Phys; 2007 Jul; 127(4):041102. PubMed ID: 17672674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: On nucleation statistics in small systems.
    Shneidman VA
    J Chem Phys; 2014 Aug; 141(5):051101. PubMed ID: 25106558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent cavitation in a viscous fluid.
    Shneidman VA
    Phys Rev E; 2016 Dec; 94(6-1):062101. PubMed ID: 28085425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early stages of Ostwald ripening.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010401. PubMed ID: 23944392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multigrid method for N-component nucleation.
    van Putten DS; Glazenborg SP; Hagmeijer R; Venner CH
    J Chem Phys; 2011 Jul; 135(1):014114. PubMed ID: 21744895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
    Cai Y; Wu HA; Luo SN
    J Chem Phys; 2014 Jun; 140(21):214317. PubMed ID: 24908018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exhaustion of nucleation in a closed system.
    Farjoun Y; Neu JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051402. PubMed ID: 19113125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: from the steady-state nucleation to the transient time regime.
    Peng LJ; Morris JR; Aga RS
    J Chem Phys; 2010 Aug; 133(8):084505. PubMed ID: 20815578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous nucleation and growth of melt in copper.
    Zheng L; An Q; Xie Y; Sun Z; Luo SN
    J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.