These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 21230197)
1. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms. Boubendir Y; Méndez V; Rotstein HG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036601. PubMed ID: 21230197 [TBL] [Abstract][Full Text] [Related]
2. Localized structures in a nonlinear wave equation stabilized by negative global feedback: one-dimensional and quasi-two-dimensional kinks. Rotstein HG; Zhabotinsky AA; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016612. PubMed ID: 16907209 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction. Rotstein HG; Zhabotinsky AM; Epstein IR Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities. Rotstein HG; Mitkov I; Zhabotinsky AM; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066613. PubMed ID: 11415248 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback. Gurevich SV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052922. PubMed ID: 23767613 [TBL] [Abstract][Full Text] [Related]
6. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback. Gaudreault M; Drolet F; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051124. PubMed ID: 21230454 [TBL] [Abstract][Full Text] [Related]
7. Bifurcation to fronts due to delay. Erneux T; Kozyreff G; Tlidi M Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):483-93. PubMed ID: 20008413 [TBL] [Abstract][Full Text] [Related]
8. Pattern formation controlled by time-delayed feedback in bistable media. He YF; Ai BQ; Hu B J Chem Phys; 2010 Sep; 133(11):114507. PubMed ID: 20866145 [TBL] [Abstract][Full Text] [Related]
9. Eckhaus instability in systems with large delay. Wolfrum M; Yanchuk S Phys Rev Lett; 2006 Jun; 96(22):220201. PubMed ID: 16803289 [TBL] [Abstract][Full Text] [Related]
11. Delayed feedback induces motion of localized spots in reaction-diffusion systems. Tlidi M; Sonnino A; Sonnino G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042918. PubMed ID: 23679500 [TBL] [Abstract][Full Text] [Related]
12. Delayed feedback control of the Lorenz system: an analytical treatment at a subcritical Hopf bifurcation. Pyragas V; Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036215. PubMed ID: 16605639 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection. Siebert J; Alonso S; Bär M; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052909. PubMed ID: 25353863 [TBL] [Abstract][Full Text] [Related]
14. Control of the Hopf-Turing transition by time-delayed global feedback in a reaction-diffusion system. Ghosh P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016222. PubMed ID: 21867288 [TBL] [Abstract][Full Text] [Related]
15. Delayed feedback control of forced self-sustained oscillations. Pyragiene T; Pyragas K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026203. PubMed ID: 16196680 [TBL] [Abstract][Full Text] [Related]
16. Time-delayed reaction-diffusion fronts. Isern N; Fort J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):057103. PubMed ID: 20365098 [TBL] [Abstract][Full Text] [Related]
17. Propagating fronts, chaos and multistability in a cell replication model. Crabb R; Mackey MC; Rey AD Chaos; 1996 Sep; 6(3):477-492. PubMed ID: 12780278 [TBL] [Abstract][Full Text] [Related]
18. Stability of position control of traveling waves in reaction-diffusion systems. Löber J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062904. PubMed ID: 25019848 [TBL] [Abstract][Full Text] [Related]
19. Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion. Curtis CW; Bortz DM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066108. PubMed ID: 23368005 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of some neural network models with delay. Ruan J; Li L; Lin W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051906. PubMed ID: 11414932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]