These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21230198)

  • 1. Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains.
    Manevitch LI; Smirnov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036602. PubMed ID: 21230198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. q-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability.
    Flach S; Ivanchenko MV; Kanakov OI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036618. PubMed ID: 16605688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. q-Breathers and the Fermi-Pasta-Ulam problem.
    Flach S; Ivanchenko MV; Kanakov OI
    Phys Rev Lett; 2005 Aug; 95(6):064102. PubMed ID: 16090957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantized breather excitations of Fermi-Pasta-Ulam lattices.
    Riseborough PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011129. PubMed ID: 22400534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of the one-mode solutions in the Fermi-Pasta-Ulam system.
    Cafarella A; Leo M; Leo RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046604. PubMed ID: 15169115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete breathers in Fermi-Pasta-Ulam lattices.
    Flach S; Gorbach A
    Chaos; 2005 Mar; 15(1):15112. PubMed ID: 15836289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences.
    Christodoulidi H; Efthymiopoulos C; Bountis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016210. PubMed ID: 20365449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics.
    Kosevich YA; Manevitch LI; Savin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model.
    Khomeriki R; Lepri S; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066626. PubMed ID: 15697545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tail resonances of Fermi-Pasta-Ulam q-breathers and their impact on the pathway to equipartition.
    Penati T; Flach S
    Chaos; 2007 Jun; 17(2):023102. PubMed ID: 17614656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonstationary dynamics of the sine lattice consisting of three pendula (trimer).
    Kovaleva M; Smirnov V; Manevitch L
    Phys Rev E; 2019 Jan; 99(1-1):012209. PubMed ID: 30780202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of nonlinear normal modes in the Fermi-Pasta-Ulam β chain in the thermodynamic limit.
    Chechin GM; Ryabov DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056601. PubMed ID: 23004889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence.
    Chin SA; Ashour OA; Belić MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063202. PubMed ID: 26764845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices.
    Ivanchenko MV; Kanakov OI; Mishagin KG; Flach S
    Phys Rev Lett; 2006 Jul; 97(2):025505. PubMed ID: 16907458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anti-FPU problem.
    Dauxois T; Khomeriki R; Piazza F; Ruffo S
    Chaos; 2005 Mar; 15(1):15110. PubMed ID: 15836287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of renormalized waves in thermalized Fermi-Pasta-Ulam chains.
    Gershgorin B; Lvov YV; Cai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046603. PubMed ID: 17501003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum.
    Starosvetsky Y; Ben-Meir Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062919. PubMed ID: 23848760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy exchange in collisions of intrinsic localized modes.
    Doi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066608. PubMed ID: 14754337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized waves in nonlinear oscillator chains.
    Iooss G; James G
    Chaos; 2005 Mar; 15(1):15113. PubMed ID: 15836290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time scale to ergodicity in the Fermi-Pasta-Ulam system.
    De Luca J; Lichtenberg AJ; Lieberman MA
    Chaos; 1995 Mar; 5(1):283-297. PubMed ID: 12780182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.