These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21230268)

  • 1. Time-varying force from dense granular avalanches on a wall.
    Chanut B; Faug T; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification.
    Faug T; Caccamo P; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051301. PubMed ID: 22181405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows.
    Faug T; Beguin R; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shallow granular flows.
    Takagi D; McElwaine JN; Huppert HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031306. PubMed ID: 21517493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations.
    Albaba A; Lambert S; Faug T
    Phys Rev E; 2018 May; 97(5-1):052903. PubMed ID: 29906957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis in a hydrodynamic model of dense granular flows.
    Artoni R; Santomaso A; Canu P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051304. PubMed ID: 21728522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for dense granular flows down bumpy inclines.
    Louge MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061303. PubMed ID: 16241217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The concept of the mobilized domain: how it can explain and predict the forces exerted by a cohesive granular avalanche on an obstacle.
    Kyburz ML; Sovilla B; Gaume J; Ancey C
    Granul Matter; 2022; 24(2):45. PubMed ID: 35221791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avalanche dynamics on a rough inclined plane.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011306. PubMed ID: 18763947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime.
    Ancey C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011304. PubMed ID: 11800690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granular flow down an inclined plane: Bagnold scaling and rheology.
    Silbert LE; Ertaş D; Grest GS; Halsey TC; Levine D; Plimpton SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051302. PubMed ID: 11735913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuum description of avalanches in granular media.
    Aranson IS; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):020301. PubMed ID: 11497550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shock waves in rapid flows of dense granular materials: theoretical predictions and experimental results.
    Pudasaini SP; Kröner C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041308. PubMed ID: 18999419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical tests of constitutive laws for dense granular flows.
    Lois G; Lemaître A; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051303. PubMed ID: 16383599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches.
    Li X; Sovilla B; Jiang C; Gaume J
    Landslides; 2021; 18(10):3393-3406. PubMed ID: 34776814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse instability of avalanches in granular flows down an incline.
    Aranson IS; Malloggi F; Clément E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):050302. PubMed ID: 16802907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plug flow and the breakdown of Bagnold scaling in cohesive granular flows.
    Brewster R; Grest GS; Landry JW; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061301. PubMed ID: 16485940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Granular avalanches down inclined and vibrated planes.
    Gaudel N; Kiesgen de Richter S; Louvet N; Jenny M; Skali-Lami S
    Phys Rev E; 2016 Sep; 94(3-1):032904. PubMed ID: 27739816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two scenarios for avalanche dynamics in inclined granular layers.
    Börzsönyi T; Halsey TC; Ecke RE
    Phys Rev Lett; 2005 May; 94(20):208001. PubMed ID: 16090290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method.
    Wu F; Fan Y; Liang L; Wang C
    PLoS One; 2016; 11(8):e0160756. PubMed ID: 27513661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.