These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 21230268)
21. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines. Faug T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062310. PubMed ID: 26764695 [TBL] [Abstract][Full Text] [Related]
22. Discrete simulation of dense flows of polyhedral grains down a rough inclined plane. Azéma E; Descantes Y; Roquet N; Roux JN; Chevoir F Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031303. PubMed ID: 23030908 [TBL] [Abstract][Full Text] [Related]
23. Macroscopic force experienced by extended objects in granular flows over a very broad Froude-number range : Macroscopic granular force on extended object. Faug T Eur Phys J E Soft Matter; 2015 May; 38(5):120. PubMed ID: 25957179 [TBL] [Abstract][Full Text] [Related]
24. Initiation of immersed granular avalanches. Mutabaruka P; Delenne JY; Soga K; Radjai F Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052203. PubMed ID: 25353783 [TBL] [Abstract][Full Text] [Related]
25. Avalanche dynamics of granular materials under the slumping regime in a rotating drum as revealed by speckle visibility spectroscopy. Yang H; Li R; Kong P; Sun QC; Biggs MJ; Zivkovic V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042206. PubMed ID: 25974483 [TBL] [Abstract][Full Text] [Related]
26. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag. Börzsönyi T; Ecke RE Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061301. PubMed ID: 17280056 [TBL] [Abstract][Full Text] [Related]
27. Dynamics of dry granular avalanches. Fischer R; Gondret P; Perrin B; Rabaud M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021302. PubMed ID: 18850826 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of granular avalanches caused by local perturbations. Emig T; Claudin P; Bouchaud JP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031305. PubMed ID: 15903424 [TBL] [Abstract][Full Text] [Related]
29. Flow rule of dense granular flows down a rough incline. Börzsönyi T; Ecke RE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031301. PubMed ID: 17930236 [TBL] [Abstract][Full Text] [Related]
30. Mean force and fluctuations on a wall immersed in a sheared granular flow. Kneib F; Faug T; Dufour F; Naaim M Phys Rev E; 2019 May; 99(5-1):052901. PubMed ID: 31212502 [TBL] [Abstract][Full Text] [Related]
31. Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment. Tripathi A; Khakhar DV Phys Rev Lett; 2011 Sep; 107(10):108001. PubMed ID: 21981532 [TBL] [Abstract][Full Text] [Related]
32. Force fluctuations on a wall in interaction with a granular lid-driven cavity flow. Kneib F; Faug T; Nicolet G; Eckert N; Naaim M; Dufour F Phys Rev E; 2017 Oct; 96(4-1):042906. PubMed ID: 29347536 [TBL] [Abstract][Full Text] [Related]
33. Influence of the number of layers on the equilibrium of a granular packing. Aguirre MA; Nerone N; Calvo A; Ippolito I; Bideau D Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):738-43. PubMed ID: 11088529 [TBL] [Abstract][Full Text] [Related]
34. Comparing flow thresholds and dynamics for oscillating and inclined granular layers. Aumaitre S; Puls C; McElwaine JN; Gollub JP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061307. PubMed ID: 17677255 [TBL] [Abstract][Full Text] [Related]
35. Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Lacaze L; Kerswell RR Phys Rev Lett; 2009 Mar; 102(10):108305. PubMed ID: 19392169 [TBL] [Abstract][Full Text] [Related]
36. Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization. Estrada N; Lizcano A; Taboada A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011303. PubMed ID: 20866607 [TBL] [Abstract][Full Text] [Related]
37. Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes. Ligneau C; Sovilla B; Gaume J PLoS One; 2022; 17(2):e0264033. PubMed ID: 35167595 [TBL] [Abstract][Full Text] [Related]
38. Effective boundary conditions for dense granular flows. Artoni R; Santomaso A; Canu P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031304. PubMed ID: 19391932 [TBL] [Abstract][Full Text] [Related]
39. Applicability of constitutive relations from kinetic theory for dense granular flows. Reddy KA; Kumaran V Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061305. PubMed ID: 18233843 [TBL] [Abstract][Full Text] [Related]
40. Towards a theoretical picture of dense granular flows down inclines. Delannay R; Louge M; Richard P; Taberlet N; Valance A Nat Mater; 2007 Feb; 6(2):99-108. PubMed ID: 17268496 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]