These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21230280)

  • 1. Impact of random obstacles on the dynamics of a dense colloidal fluid.
    Kurzidim J; Coslovich D; Kahl G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041505. PubMed ID: 21230280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic arrest of colloids in porous environments: disentangling crowding and confinement.
    Kurzidim J; Coslovich D; Kahl G
    J Phys Condens Matter; 2011 Jun; 23(23):234122. PubMed ID: 21613709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-particle and collective slow dynamics of colloids in porous confinement.
    Kurzidim J; Coslovich D; Kahl G
    Phys Rev Lett; 2009 Sep; 103(13):138303. PubMed ID: 19905547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization and dynamical arrest of colloidal fluids in a disordered matrix of polydisperse obstacles.
    Elizondo-Aguilera LF; Medina-Noyola M
    J Chem Phys; 2015 Jun; 142(22):224901. PubMed ID: 26071725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of individual colloidal particles in one-dimensional random potentials: a simulation study.
    Hanes RD; Egelhaaf SU
    J Phys Condens Matter; 2012 Nov; 24(46):464116. PubMed ID: 23114221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural relaxation in dense liquids composed of anisotropic particles.
    Shen T; Schreck C; Chakraborty B; Freed DE; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041303. PubMed ID: 23214576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of colloidal fluids in random porous media.
    Chávez-Rojo MA; Juárez-Maldonado R; Medina-Noyola M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):040401. PubMed ID: 18517570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tagged-particle dynamics in a fluid adsorbed in a disordered porous solid: interplay between the diffusion-localization and liquid-glass transitions.
    Krakoviack V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061501. PubMed ID: 19658507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Logarithmic relaxation in a colloidal system.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031405. PubMed ID: 14524767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in relaxation scenario at the order-disorder transition of a colloidal fluid of hard spheres seen from the Gaussian limit of the self-intermediate scattering function.
    van Megen W; Mortensen TC; Bryant G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031402. PubMed ID: 16241430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion of hard sphere fluids in disordered media: a molecular dynamics simulation study.
    Chang R; Jagannathan K; Yethiraj A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051101. PubMed ID: 15244802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tagged particle motion in a dense liquid: feedback effects from the collective dynamics.
    Kaur C; Das SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051505. PubMed ID: 12786156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The van Hove distribution function for brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics.
    Hopkins P; Fortini A; Archer AJ; Schmidt M
    J Chem Phys; 2010 Dec; 133(22):224505. PubMed ID: 21171689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres.
    Stopper D; Thorneywork AL; Dullens RPA; Roth R
    J Chem Phys; 2018 Mar; 148(10):104501. PubMed ID: 29544259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of matrix structure on the diffusion of fluids in porous media.
    Sung BJ; Yethiraj A
    J Chem Phys; 2008 Feb; 128(5):054702. PubMed ID: 18266457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gel to glass transition in simulation of a valence-limited colloidal system.
    Zaccarelli E; Saika-Voivod I; Buldyrev SV; Moreno AJ; Tartaglia P; Sciortino F
    J Chem Phys; 2006 Mar; 124(12):124908. PubMed ID: 16599726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode-coupling theory for the slow collective dynamics of fluids adsorbed in disordered porous media.
    Krakoviack V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031503. PubMed ID: 17500702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.