These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21230288)

  • 1. Adhesion of liquid droplets to rough surfaces.
    Li R; Alizadeh A; Shang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041608. PubMed ID: 21230288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces.
    Long J; Hyder MN; Huang RY; Chen P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):173-90. PubMed ID: 16154106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
    Lee J; Fearing RS
    Langmuir; 2012 Oct; 28(43):15372-7. PubMed ID: 23072291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm.
    Peng ZL; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051915. PubMed ID: 21728579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
    Stanton MM; Ducker RE; MacDonald JC; Lambert CR; McGimpsey WG
    J Colloid Interface Sci; 2012 Feb; 367(1):502-8. PubMed ID: 22129630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the role of the three-phase contact line in surface deformation.
    Leh A; N'guessan HE; Fan J; Bahadur P; Tadmor R; Zhao Y
    Langmuir; 2012 Apr; 28(13):5795-801. PubMed ID: 22375701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.
    Tie L; Guo Z; Li W
    J Colloid Interface Sci; 2014 Dec; 436():19-28. PubMed ID: 25265581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation.
    Su Y; Ji B; Huang Y; Hwang KC
    Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of breast implant surfaces and correlation with fibroblast adhesion.
    Valencia-Lazcano AA; Alonso-Rasgado T; Bayat A
    J Mech Behav Biomed Mater; 2013 May; 21():133-48. PubMed ID: 23545265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanodroplets on rough hydrophilic and hydrophobic surfaces.
    Yang C; Tartaglino U; Persson BN
    Eur Phys J E Soft Matter; 2008 Feb; 25(2):139-52. PubMed ID: 18311474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of nano-roughness in antifouling.
    Scardino AJ; Zhang H; Cookson DJ; Lamb RN; de Nys R
    Biofouling; 2009 Nov; 25(8):757-67. PubMed ID: 20183134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.