These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21230322)

  • 1. Dielectric properties of biological cells in the dipolar approximation for the single-shell ellipsoidal model: the effect of localized surface charge distributions at the membrane interface.
    Di Biasio A; Ambrosone L; Cametti C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041916. PubMed ID: 21230322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric response of shelled toroidal particles carrying localized surface charge distributions. The effect of concentric and confocal shells.
    Di Biasio A; Ambrosone L; Cametti C
    Bioelectrochemistry; 2014 Aug; 98():76-86. PubMed ID: 24732083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarizability of spherical biological cells in the presence of localized surface charge distributions at the membrane interfaces.
    Di Biasio A; Cametti C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021917. PubMed ID: 20866847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dielectric behavior of nonspherical biological cell suspensions: an analytic approach.
    Di Biasio A; Ambrosone L; Cametti C
    Biophys J; 2010 Jul; 99(1):163-74. PubMed ID: 20655844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-layer dielectric models for generalized Coulomb potential calculation in ellipsoidal geometry.
    Xue C; Deng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056709. PubMed ID: 21728695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the limits of ellipsoidal models when analyzing dielectric behavior of living cells. Emphasis on red blood cells.
    Gheorghiu E
    Ann N Y Acad Sci; 1999 Apr; 873():262-8. PubMed ID: 10372175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the dielectric relaxation of biological cell suspensions: the effect of the membrane electrical conductivity.
    Di Biasio A; Cametti C
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):433-41. PubMed ID: 21334862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency dielectric response of a spheroidal particle with a thin double layer.
    Freed DE
    Phys Rev E; 2018 Aug; 98(2-1):022607. PubMed ID: 30253600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex dielectric response of ellipsoidal particles with surface conduction.
    Bertrand EA; Endres AL
    J Chem Phys; 2009 Jun; 130(22):224705. PubMed ID: 19530782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.
    Taheri-Araghi S; Ha BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021508. PubMed ID: 16196574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing cellular systems by means of dielectric spectroscopy.
    Gheorghiu E
    Bioelectromagnetics; 1996; 17(6):475-82. PubMed ID: 8986365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maxwell's mixing equation revisited: characteristic impedance equations for ellipsoidal cells.
    Stubbe M; Gimsa J
    Biophys J; 2015 Jul; 109(2):194-208. PubMed ID: 26200856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein influence on the plasma membrane dielectric properties: in vivo study utilizing dielectric spectroscopy and fluorescence microscopy.
    Stoneman M; Chaturvedi A; Jansma DB; Kosempa M; Zeng C; Raicu V
    Bioelectrochemistry; 2007 May; 70(2):542-50. PubMed ID: 17350897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Forward Scattering of Ellipsoidal Dielectric Nanoparticles.
    Wang Z; An N; Shen F; Zhou H; Sun Y; Jiang Z; Han Y; Li Y; Guo Z
    Nanoscale Res Lett; 2017 Dec; 12(1):58. PubMed ID: 28105606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic response of a dipole-coupled ellipsoidal bilayer.
    Ambjörnsson T; Apell SP; Mukhopadhyay G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031914. PubMed ID: 15089329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the shape of human erythrocytes on the evaluation of the passive electrical properties of the cell membrane.
    Di Biasio A; Cametti C
    Bioelectrochemistry; 2005 Feb; 65(2):163-9. PubMed ID: 15713568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive electrical properties of the membrane and cytoplasm of cultured rat basophil leukemia cells. I. Dielectric behavior of cell suspensions in 0.01-500 MHz and its simulation with a single-shell model.
    Irimajiri A; Asami K; Ichinowatari T; Kinoshita Y
    Biochim Biophys Acta; 1987 Jan; 896(2):203-13. PubMed ID: 3801468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric properties of aqueous zwitterionic liposome suspensions.
    Di Biasio A; Cametti C
    Bioelectrochemistry; 2007 May; 70(2):328-34. PubMed ID: 16781895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.