These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21230392)
1. Development and validation of a turbulent-mix model for variable-density and compressible flows. Banerjee A; Gore RA; Andrews MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392 [TBL] [Abstract][Full Text] [Related]
2. Onset of turbulence in accelerated high-Reynolds-number flow. Zhou Y; Robey HF; Buckingham AC Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270 [TBL] [Abstract][Full Text] [Related]
3. Two-length-scale turbulence model for self-similar buoyancy-, shock-, and shear-driven mixing. Morgan BE; Schilling O; Hartland TA Phys Rev E; 2018 Jan; 97(1-1):013104. PubMed ID: 29448443 [TBL] [Abstract][Full Text] [Related]
5. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling. Schilling O; Mueschke NJ Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290 [TBL] [Abstract][Full Text] [Related]
6. Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Zhou Y; Zimmerman GB; Burke EW Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056303. PubMed ID: 12059699 [TBL] [Abstract][Full Text] [Related]
7. Compressibility effects in Rayleigh-Taylor instability-induced flows. Gauthier S; Le Creurer B Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880 [TBL] [Abstract][Full Text] [Related]
8. Scalar mixing in a Kelvin-Helmholtz shear layer and implications for Reynolds-averaged Navier-Stokes modeling of mixing layers. Morgan BE Phys Rev E; 2021 May; 103(5-1):053108. PubMed ID: 34134322 [TBL] [Abstract][Full Text] [Related]
9. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations. Tritschler VK; Zubel M; Hickel S; Adams NA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181 [TBL] [Abstract][Full Text] [Related]
10. Acceleration and turbulence in Rayleigh-Taylor mixing. Sreenivasan KR; Abarzhi SI Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130267. PubMed ID: 24146015 [TBL] [Abstract][Full Text] [Related]
11. Buoyancy-drag mix model obtained by multifluid interpenetration equations. Cheng B; Scannapieco AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046310. PubMed ID: 16383536 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability. Livescu D Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120185. PubMed ID: 24146007 [TBL] [Abstract][Full Text] [Related]
13. Rayleigh-Taylor turbulence is nothing like Kolmogorov turbulence in the self-similar regime. Poujade O Phys Rev Lett; 2006 Nov; 97(18):185002. PubMed ID: 17155550 [TBL] [Abstract][Full Text] [Related]
14. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
15. The density ratio dependence of self-similar Rayleigh-Taylor mixing. Youngs DL Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005 [TBL] [Abstract][Full Text] [Related]
16. Effects of initial condition spectral content on shock-driven turbulent mixing. Nelson NJ; Grinstein FF Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013014. PubMed ID: 26274276 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates. Heschl C; Inthavong K; Sanz W; Tu J Indoor Air; 2014 Feb; 24(1):93-102. PubMed ID: 23668473 [TBL] [Abstract][Full Text] [Related]
18. Experiments of the Richtmyer-Meshkov instability. Prestridge K; Orlicz G; Balasubramanian S; Balakumar BJ Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120165. PubMed ID: 24146004 [TBL] [Abstract][Full Text] [Related]
19. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. Premnath KN; Pattison MJ; Banerjee S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870 [TBL] [Abstract][Full Text] [Related]
20. Coherent structures in dissipative particle dynamics simulations of the transition to turbulence in compressible shear flows. van de Meent JW; Morozov A; Somfai E; Sultan E; van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):015701. PubMed ID: 18764013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]