These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 21230392)
21. The local wavenumber model for computation of turbulent mixing. Kurien S; Pal N Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2219):20210076. PubMed ID: 35094556 [TBL] [Abstract][Full Text] [Related]
22. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment. Hurricane OA; Smalyuk VA; Raman K; Schilling O; Hansen JF; Langstaff G; Martinez D; Park HS; Remington BA; Robey HF; Greenough JA; Wallace R; Di Stefano CA; Drake RP; Marion D; Krauland CM; Kuranz CC Phys Rev Lett; 2012 Oct; 109(15):155004. PubMed ID: 23102319 [TBL] [Abstract][Full Text] [Related]
23. Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts. Cheng B; Glimm J; Sharp DH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036312. PubMed ID: 12366258 [TBL] [Abstract][Full Text] [Related]
24. Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Gomez T; Flutet V; Sagaut P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):035301. PubMed ID: 19392007 [TBL] [Abstract][Full Text] [Related]
25. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II. Abarzhi SI; Gauthier S; Sreenivasan KR Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016 [TBL] [Abstract][Full Text] [Related]
26. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related]
27. Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence. Qiu X; Liu YL; Zhou Q Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043012. PubMed ID: 25375598 [TBL] [Abstract][Full Text] [Related]
28. Validation of OpenFoam for heavy gas dispersion applications. Mack A; Spruijt MP J Hazard Mater; 2013 Nov; 262():504-16. PubMed ID: 24076574 [TBL] [Abstract][Full Text] [Related]
29. Self-consistent, high-order spatial profiles in a model for two-fluid turbulent mixing. Morgan BE Phys Rev E; 2021 Jul; 104(1-2):015107. PubMed ID: 34412370 [TBL] [Abstract][Full Text] [Related]
30. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. Hamlin ND; Newman WI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524 [TBL] [Abstract][Full Text] [Related]
31. Self-gravity driven instabilities at accelerated interfaces. Hueckstaedt RM; Hunter JH; Lovelace RV Ann N Y Acad Sci; 2005 Jun; 1045():246-59. PubMed ID: 15980316 [TBL] [Abstract][Full Text] [Related]
33. Variable-Order Fractional Models for Wall-Bounded Turbulent Flows. Song F; Karniadakis GE Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34202955 [TBL] [Abstract][Full Text] [Related]
34. Optimal Length Scale for a Turbulent Dynamo. Sadek M; Alexakis A; Fauve S Phys Rev Lett; 2016 Feb; 116(7):074501. PubMed ID: 26943538 [TBL] [Abstract][Full Text] [Related]
35. Compressible turbulent mixing: Effects of Schmidt number. Ni Q Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053020. PubMed ID: 26066261 [TBL] [Abstract][Full Text] [Related]
36. Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions. Li H; Tian B; He Z; Zhang Y Phys Rev E; 2021 May; 103(5-1):053109. PubMed ID: 34134196 [TBL] [Abstract][Full Text] [Related]
37. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Liao W; Peng Y; Luo LS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046702. PubMed ID: 19905477 [TBL] [Abstract][Full Text] [Related]
38. Nature of laminar-turbulence intermittency in shear flows. Avila M; Hof B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063012. PubMed ID: 23848777 [TBL] [Abstract][Full Text] [Related]
39. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
40. On the accuracy of RANS simulations with DNS data. Poroseva SV; Colmenares F JD; Murman SM Phys Fluids (1994); 2016 Nov; 28(11):. PubMed ID: 30271109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]