These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21230421)

  • 1. Symmetrization of single-sided or nonsymmetrical distributions: the way to enhance a generation rate of random bits from a physical source of randomness.
    Chizhevsky VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):050101. PubMed ID: 21230421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Truly random number generation based on measurement of phase noise of a laser.
    Guo H; Tang W; Liu Y; Wei W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051137. PubMed ID: 20866215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser.
    Li N; Kim B; Chizhevsky VN; Locquet A; Bloch M; Citrin DS; Pan W
    Opt Express; 2014 Mar; 22(6):6634-46. PubMed ID: 24664012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser.
    Butler T; Durkan C; Goulding D; Slepneva S; Kelleher B; Hegarty SP; Huyet G
    Opt Lett; 2016 Jan; 41(2):388-91. PubMed ID: 26766721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers.
    Sakuraba R; Iwakawa K; Kanno K; Uchida A
    Opt Express; 2015 Jan; 23(2):1470-90. PubMed ID: 25835904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser.
    Zhang L; Pan B; Chen G; Guo L; Lu D; Zhao L; Wang W
    Sci Rep; 2017 Apr; 8():45900. PubMed ID: 28374860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-bit quantum random number generation by measuring positions of arrival photons.
    Yan Q; Zhao B; Liao Q; Zhou N
    Rev Sci Instrum; 2014 Oct; 85(10):103116. PubMed ID: 25362380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5.4 Gbps real time quantum random number generator with simple implementation.
    Yang J; Liu J; Su Q; Li Z; Fan F; Xu B; Guo H
    Opt Express; 2016 Nov; 24(24):27475-27481. PubMed ID: 27906319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast physical random bit generation with photonic integrated circuits with different external cavity lengths for chaos generation.
    Takahashi R; Akizawa Y; Uchida A; Harayama T; Tsuzuki K; Sunada S; Arai K; Yoshimura K; Davis P
    Opt Express; 2014 May; 22(10):11727-40. PubMed ID: 24921295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast random bits generation based on a single chaotic semiconductor ring laser.
    Nguimdo RM; Verschaffelt G; Danckaert J; Leijtens X; Bolk J; Van der Sande G
    Opt Express; 2012 Dec; 20(27):28603-13. PubMed ID: 23263098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers.
    Hirano K; Yamazaki T; Morikatsu S; Okumura H; Aida H; Uchida A; Yoshimori S; Yoshimura K; Harayama T; Davis P
    Opt Express; 2010 Mar; 18(6):5512-24. PubMed ID: 20389568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.
    Wang A; Wang L; Li P; Wang Y
    Opt Express; 2017 Feb; 25(4):3153-3164. PubMed ID: 28241531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random number generation using spontaneous symmetry breaking in a Kerr resonator.
    Quinn L; Xu G; Xu Y; Li Z; Fatome J; Murdoch SG; Coen S; Erkintalo M
    Opt Lett; 2023 Jul; 48(14):3741-3744. PubMed ID: 37450739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic laser based physical random bit streaming system with a computer application interface.
    Shinohara S; Arai K; Davis P; Sunada S; Harayama T
    Opt Express; 2017 Mar; 25(6):6461-6474. PubMed ID: 28380996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation.
    Nguimdo RM; Tchitnga R; Woafo P
    Chaos; 2013 Dec; 23(4):043122. PubMed ID: 24387561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser.
    Monet F; Boisvert JS; Kashyap R
    Sci Rep; 2021 Jun; 11(1):13182. PubMed ID: 34162986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4.5 Gbps high-speed real-time physical random bit generator.
    Wang A; Li P; Zhang J; Zhang J; Li L; Wang Y
    Opt Express; 2013 Aug; 21(17):20452-62. PubMed ID: 24105589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed quantum-random number generation by continuous measurement of arrival time of photons.
    Yan Q; Zhao B; Hua Z; Liao Q; Yang H
    Rev Sci Instrum; 2015 Jul; 86(7):073113. PubMed ID: 26233362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum random number generation based on spontaneous Raman scattering in standard single-mode fiber.
    Hu YY; Lin X; Wang S; Geng JQ; Yin ZQ; Chen W; He DY; Huang W; Xu BJ; Guo GC; Han ZF
    Opt Lett; 2020 Nov; 45(21):6038-6041. PubMed ID: 33137063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable quantum random number generator without postprocessing.
    Nguyen L; Rehain P; Sua YM; Huang YP
    Opt Lett; 2018 Feb; 43(4):631-634. PubMed ID: 29444039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.