These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. Léonforte F; Servantie J; Pastorino C; Müller M J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476 [TBL] [Abstract][Full Text] [Related]
6. Rate-dependent slip boundary conditions for simple fluids. Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051605. PubMed ID: 17677076 [TBL] [Abstract][Full Text] [Related]
7. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. Priezjev NV J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949 [TBL] [Abstract][Full Text] [Related]
9. Friction between solids and adsorbed fluids is spatially distributed at the nanoscale. Bhatia SK; Nicholson D Langmuir; 2013 Nov; 29(47):14519-26. PubMed ID: 24168469 [TBL] [Abstract][Full Text] [Related]
10. Rheological study of polymer flow past rough surfaces with slip boundary conditions. Niavarani A; Priezjev NV J Chem Phys; 2008 Oct; 129(14):144902. PubMed ID: 19045163 [TBL] [Abstract][Full Text] [Related]
11. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Niavarani A; Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383 [TBL] [Abstract][Full Text] [Related]
12. Prediction of fluid velocity slip at solid surfaces. Hansen JS; Todd BD; Daivis PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016313. PubMed ID: 21867310 [TBL] [Abstract][Full Text] [Related]
13. Identifying two regimes of slip of simple fluids over smooth surfaces with weak and strong wall-fluid interaction energies. Hu H; Bao L; Priezjev NV; Luo K J Chem Phys; 2017 Jan; 146(3):034701. PubMed ID: 28109239 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture. Nakaoka S; Yamaguchi Y; Omori T; Kagawa M; Nakajima T; Fujimura H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022402. PubMed ID: 26382411 [TBL] [Abstract][Full Text] [Related]
15. Wall slip for complex liquids - Phenomenon and its causes. Malkin AY; Patlazhan SA Adv Colloid Interface Sci; 2018 Jul; 257():42-57. PubMed ID: 29934140 [TBL] [Abstract][Full Text] [Related]
16. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids. Bao L; Priezjev NV; Hu H; Luo K Phys Rev E; 2017 Sep; 96(3-1):033110. PubMed ID: 29346922 [TBL] [Abstract][Full Text] [Related]
17. Slip length crossover on a graphene surface. Liang Z; Keblinski P J Chem Phys; 2015 Apr; 142(13):134701. PubMed ID: 25854252 [TBL] [Abstract][Full Text] [Related]
18. Molecular theory of hydrodynamic boundary conditions in nanofluidics. Kobryn AE; Kovalenko A J Chem Phys; 2008 Oct; 129(13):134701. PubMed ID: 19045110 [TBL] [Abstract][Full Text] [Related]
19. Slip of Alkanes Confined between Surfactant Monolayers Adsorbed on Solid Surfaces. Ewen JP; Kannam SK; Todd BD; Dini D Langmuir; 2018 Apr; 34(13):3864-3873. PubMed ID: 29537281 [TBL] [Abstract][Full Text] [Related]
20. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. Voronov RS; Papavassiliou DV; Lee LL J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]