These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21230485)

  • 1. Cumulative distribution functions associated with bubble-nucleation processes in cavitation.
    Watanabe H; Suzuki M; Ito N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051604. PubMed ID: 21230485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous cavitation in a Lennard-Jones liquid at negative pressures.
    Baidakov VG; Bobrov KS
    J Chem Phys; 2014 May; 140(18):184506. PubMed ID: 24832287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeding approach to bubble nucleation in superheated Lennard-Jones fluids.
    Rosales-Pelaez P; Garcia-Cid MI; Valeriani C; Vega C; Sanz E
    Phys Rev E; 2019 Nov; 100(5-1):052609. PubMed ID: 31869963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous bubble nucleation driven by local hot spots: a molecular dynamics study.
    Wang ZJ; Valeriani C; Frenkel D
    J Phys Chem B; 2009 Mar; 113(12):3776-84. PubMed ID: 19007279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seeding approach to nucleation in the NVT ensemble: The case of bubble cavitation in overstretched Lennard Jones fluids.
    Rosales-Pelaez P; Sanchez-Burgos I; Valeriani C; Vega C; Sanz E
    Phys Rev E; 2020 Feb; 101(2-1):022611. PubMed ID: 32168559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parameter-free prediction of simulated crystal nucleation times in the Lennard-Jones system: from the steady-state nucleation to the transient time regime.
    Peng LJ; Morris JR; Aga RS
    J Chem Phys; 2010 Aug; 133(8):084505. PubMed ID: 20815578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of bubble nucleation in dark matter detectors.
    Denzel P; Diemand J; Angélil R
    Phys Rev E; 2016 Jan; 93(1):013301. PubMed ID: 26871185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of bubble cavitation rates in a symmetrical Lennard-Jones mixture by NVT seeding simulations.
    Lamas CP; Sanz E; Vega C; Noya EG
    J Chem Phys; 2023 Mar; 158(12):124109. PubMed ID: 37003754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of entropy on the nucleation of cavitation bubbles in water under tension.
    Menzl G; Dellago C
    J Chem Phys; 2016 Dec; 145(21):211918. PubMed ID: 28799367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavitation in a metallic liquid: homogeneous nucleation and growth of nanovoids.
    Cai Y; Wu HA; Luo SN
    J Chem Phys; 2014 Jun; 140(21):214317. PubMed ID: 24908018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method.
    Gonzalez MA; Abascal JL; Valeriani C; Bresme F
    J Chem Phys; 2015 Apr; 142(15):154903. PubMed ID: 25903906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation and crystallization in a metastable Lennard-Jones liquid at negative pressures and low temperatures.
    Baidakov VG; Bobrov KS; Teterin AS
    J Chem Phys; 2011 Aug; 135(5):054512. PubMed ID: 21823717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory.
    Bal KM; Neyts EC
    J Chem Phys; 2022 Nov; 157(18):184113. PubMed ID: 36379788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble.
    Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F
    Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulation study of cavity-generated instabilities in the superheated Lennard-Jones liquid.
    Torabi K; Corti DS
    J Chem Phys; 2010 Oct; 133(13):134505. PubMed ID: 20942544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.