These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21230541)

  • 1. Hierarchical simulations for the design of supertough nanofibers inspired by spider silk.
    Bosia F; Buehler MJ; Pugno NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056103. PubMed ID: 21230541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils.
    Nova A; Keten S; Pugno NM; Redaelli A; Buehler MJ
    Nano Lett; 2010 Jul; 10(7):2626-34. PubMed ID: 20518518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hidden link between supercontraction and mechanical behavior of spider silks.
    Elices M; Plaza GR; Pérez-Rigueiro J; Guinea GV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):658-69. PubMed ID: 21565714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk.
    Anton AM; Heidebrecht A; Mahmood N; Beiner M; Scheibel T; Kremer F
    Biomacromolecules; 2017 Dec; 18(12):3954-3962. PubMed ID: 28954189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spider silk as a load bearing biomaterial: tailoring mechanical properties via structural modifications.
    Brown CP; Rosei F; Traversa E; Licoccia S
    Nanoscale; 2011 Mar; 3(3):870-6. PubMed ID: 21212901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic material and structure optimization yields robust spider web anchorages.
    Pugno NM; Cranford SW; Buehler MJ
    Small; 2013 Aug; 9(16):2747-56. PubMed ID: 23585296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design.
    Wei X; Naraghi M; Espinosa HD
    ACS Nano; 2012 Mar; 6(3):2333-44. PubMed ID: 22316210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the mechanical properties of spider silk as a model nanostructured polymer.
    Porter D; Vollrath F; Shao Z
    Eur Phys J E Soft Matter; 2005 Feb; 16(2):199-206. PubMed ID: 15729511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural biological materials: critical mechanics-materials connections.
    Meyers MA; McKittrick J; Chen PY
    Science; 2013 Feb; 339(6121):773-9. PubMed ID: 23413348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
    Giesa T; Arslan M; Pugno NM; Buehler MJ
    Nano Lett; 2011 Nov; 11(11):5038-46. PubMed ID: 21967633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spider silk: understanding the structure-function relationship of a natural fiber.
    Humenik M; Scheibel T; Smith A
    Prog Mol Biol Transl Sci; 2011; 103():131-85. PubMed ID: 21999996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical chain model of spider capture silk elasticity.
    Zhou H; Zhang Y
    Phys Rev Lett; 2005 Jan; 94(2):028104. PubMed ID: 15698235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The common house spider alters the material and mechanical properties of cobweb silk in response to different prey.
    Boutry C; Blackledge TA
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):542-52. PubMed ID: 18651614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation.
    Vehoff T; Glisović A; Schollmeyer H; Zippelius A; Salditt T
    Biophys J; 2007 Dec; 93(12):4425-32. PubMed ID: 17766337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fiber mechanics from multiscale force distribution analysis.
    Cetinkaya M; Xiao S; Markert B; Stacklies W; Gräter F
    Biophys J; 2011 Mar; 100(5):1298-305. PubMed ID: 21354403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins.
    Heim M; Römer L; Scheibel T
    Chem Soc Rev; 2010 Jan; 39(1):156-64. PubMed ID: 20023846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk.
    Xie L; Xu H; Li LB; Hsiao BS; Zhong GJ; Li ZM
    Sci Rep; 2016 Oct; 6():34572. PubMed ID: 27694989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.