These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21230584)

  • 1. X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones.
    Iglauer S; Favretto S; Spinelli G; Schena G; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056315. PubMed ID: 21230584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone.
    Iglauer S; Fernø MA; Shearing P; Blunt MJ
    J Colloid Interface Sci; 2012 Jun; 375(1):187-92. PubMed ID: 22440726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of grain roughness on residual nonwetting phase cluster size distribution in packed columns of uniform spheres.
    Tanino Y; Ibekwe A; Pokrajac D
    Phys Rev E; 2020 Jul; 102(1-1):013109. PubMed ID: 32795039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-scale micro-computed-tomography imaging: nonwetting-phase cluster-size distribution during drainage and imbibition.
    Georgiadis A; Berg S; Makurat A; Maitland G; Ott H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033002. PubMed ID: 24125339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster evolution in steady-state two-phase flow in porous media.
    Ramstad T; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026306. PubMed ID: 16605453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. History effects on nonwetting fluid residuals during desaturation flow through disordered porous media.
    Chevalier T; Salin D; Talon L; Yiotis AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043015. PubMed ID: 25974588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR T2 distributions and two phase flow simulations from x-ray micro-tomography images of sandstones.
    Lu D; Zhou M; Dunsmuir JH; Thomann H
    Magn Reson Imaging; 2001; 19(3-4):443-8. PubMed ID: 11445327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiments and analysis of drainage displacement processes relevant to carbon dioxide injection.
    Aryana SA; Kovscek AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066310. PubMed ID: 23368041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography.
    Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of the influence of grain geometry on residual NAPL using synchrotron microtomography.
    Al-Raoush RI
    J Contam Hydrol; 2014 Apr; 159():1-10. PubMed ID: 24534446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ganglion dynamics and its implications to geologic carbon dioxide storage.
    Wang Y; Bryan C; Dewers T; Heath JE; Jove-Colon C
    Environ Sci Technol; 2013 Jan; 47(1):219-26. PubMed ID: 22844874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state, simultaneous two-phase flow in porous media: an experimental study.
    Tallakstad KT; Løvoll G; Knudsen HA; Ramstad T; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036308. PubMed ID: 19905213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large clusters in supercritical percolation.
    Grinchuk PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016124. PubMed ID: 12241443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution of the explosive percolation quest. II. Infinite-order transition produced by the initial distributions of clusters.
    da Costa RA; Dorogovtsev SN; Goltsev AV; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032140. PubMed ID: 25871087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Ganglia Dissolution and Mobilization in a Water-Saturated Porous Medium using MRI.
    Johns ML; Gladden LF
    J Colloid Interface Sci; 2000 May; 225(1):119-127. PubMed ID: 10767152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid.
    Borman VD; Belogorlov AA; Byrkin VA; Tronin VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052116. PubMed ID: 24329223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the dissolution process of metals in the gas phase: reactions of nanoscale Al and Ga metal atom clusters and their relationship to similar metalloid clusters.
    Burgert R; Schnöckel H
    Chem Commun (Camb); 2008 May; (18):2075-89. PubMed ID: 18438480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary saturation and desaturation.
    Hilfer R; Armstrong RT; Berg S; Georgiadis A; Ott H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063023. PubMed ID: 26764820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.
    Lauridsen T; Glavina K; Colmer TD; Winkel A; Irvine S; Lefmann K; Feidenhans'l R; Pedersen O
    J Struct Biol; 2014 Oct; 188(1):61-70. PubMed ID: 25175398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.