These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 21230615)

  • 1. Kramers problem: numerical Wiener-Hopf-like model characteristics.
    Ezin AN; Samgin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056703. PubMed ID: 21230615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach.
    Kudryavtsev O
    ScientificWorldJournal; 2013; 2013():963625. PubMed ID: 24489518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An explicit Wiener-Hopf factorization algorithm for matrix polynomials and its exact realizations within ExactMPF package.
    Adukov VM; Adukova NV; Mishuris G
    Proc Math Phys Eng Sci; 2022 Jul; 478(2263):20210941. PubMed ID: 35811639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Wiener-Hopf technique, its generalizations and applications: constructive and approximate methods.
    Kisil AV; Abrahams ID; Mishuris G; Rogosin SV
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210533. PubMed ID: 35153588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On explicit Wiener-Hopf factorization of 2 × 2 matrices in a vicinity of a given matrix.
    Ephremidze L; Spitkovsky I
    Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20200027. PubMed ID: 32831589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
    Rips I
    Phys Rev E; 2017 Jan; 95(1-1):012119. PubMed ID: 28208317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annular and circular rigid inclusions planted into a penny-shaped crack and factorization of triangular matrices.
    Antipov YA; Mkhitaryan SM
    Proc Math Phys Eng Sci; 2020 Jun; 476(2238):20200240. PubMed ID: 32831598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution of quantum Langevin equation: approximations, theoretical and numerical aspects.
    Banerjee D; Bag BC; Banik SK; Ray DS
    J Chem Phys; 2004 May; 120(19):8960-72. PubMed ID: 15267831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements to Kramers turnover theory.
    Pollak E; Ankerhold J
    J Chem Phys; 2013 Apr; 138(16):164116. PubMed ID: 23635120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime.
    Banerjee D; Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051105. PubMed ID: 12513465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the rational function approximation to Wiener-Hopf calculations for fluid-loaded plates.
    Rumerman ML
    J Acoust Soc Am; 2005 Jun; 117(6):3517-23. PubMed ID: 16018456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying an iterative method numerically to solve
    Priddin MJ; Kisil AV; Ayton LJ
    Philos Trans A Math Phys Eng Sci; 2020 Jan; 378(2162):20190241. PubMed ID: 31760896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On collisional energy transfer in recombination and dissociation reactions: A Wiener-Hopf problem and the effect of a near elastic peak.
    Zhu Z; Marcus RA
    J Chem Phys; 2008 Dec; 129(21):214106. PubMed ID: 19063543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Wiener-Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate.
    Smith MJA; Peter MA; Abrahams ID; Meylan MH
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200360. PubMed ID: 33223937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kramers' escape problem for fractional Klein-Kramers equation with tempered α-stable waiting times.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021137. PubMed ID: 21928979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical treatment of the dynamics of a conserved order parameter in the presence of walls.
    Fukuda J; Yoneya M; Yokoyama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066706. PubMed ID: 16907022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approach to quantum Kramers' equation and barrier crossing dynamics.
    Banerjee D; Bag BC; Banik SK; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021109. PubMed ID: 11863505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical solution of scattering problems using a Riemann-Hilbert formulation.
    Llewellyn Smith SG; Luca E
    Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190105. PubMed ID: 31611712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymptotical forms of canonical mappings near separatrix of Hamiltonian systems.
    Abdullaev SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046202. PubMed ID: 16383507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.