These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21230663)

  • 1. Possibility of long-distance heat transport in weightlessness using supercritical fluids.
    Beysens D; Chatain D; Nikolayev VS; Ouazzani J; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061126. PubMed ID: 21230663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness.
    Garrabos Y; Beysens D; Lecoutre C; Dejoan A; Polezhaev V; Emelianov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056317. PubMed ID: 17677174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat can cool near-critical fluids.
    Beysens D; Fröhlich T; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051201. PubMed ID: 22181401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermovibrational instability in supercritical fluids under weightlessness.
    Amiroudine S; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036325. PubMed ID: 18851161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adiabatic heating and convection in a porous medium filled with a near-critical fluid.
    Soboleva EB
    Ann N Y Acad Sci; 2009 Apr; 1161():117-34. PubMed ID: 19426311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermalization of a two-phase fluid in low gravity: heat transferred from cold to Hot.
    Wunenburger R; Garrabos Y; Lecoutre-Chabot C; Beysens D; Hegseth J
    Phys Rev Lett; 2000 May; 84(18):4100-3. PubMed ID: 10990620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Piston-effect-induced thermal jets in near-critical fluids.
    Fröhlich T; Beysens D; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046307. PubMed ID: 17155173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convective heat transport in compressible fluids.
    Furukawa A; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016302. PubMed ID: 12241476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady near-critical flows in microgravity.
    Polezhaev VI; Gorbunov AA; Soboleva EB
    Ann N Y Acad Sci; 2004 Nov; 1027():286-302. PubMed ID: 15644362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-critical fluid boiling: overheating and wetting films.
    Hegseth J; Oprisan A; Garrabos Y; Lecoutre-Chabot C; Nikolayev VS; Beysens D
    Eur Phys J E Soft Matter; 2008 Aug; 26(4):345-53. PubMed ID: 19230113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach.
    Nikolayev VS; Dejoan A; Garrabos Y; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061202. PubMed ID: 16241213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat transfer and convection onset in a compressible fluid: 3He near the critical point.
    Kogan AB; Meyer H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056310. PubMed ID: 11415009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microgravity experiments on phase change of self-rewetting fluids.
    Abe Y; Iwasaki A; Tanaka K
    Ann N Y Acad Sci; 2004 Nov; 1027():269-85. PubMed ID: 15644361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.
    Házi G; Márkus A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026305. PubMed ID: 18352120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.
    Ohta H; Ohno T; Hioki F; Shinmoto Y
    Ann N Y Acad Sci; 2004 Nov; 1027():217-34. PubMed ID: 15644358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection.
    Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061126. PubMed ID: 18233833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions.
    Beysens D; Chatain D; Evesque P; Garrabos Y
    Phys Rev Lett; 2005 Jul; 95(3):034502. PubMed ID: 16090746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid thermal relaxation in near-critical fluids and critical speeding up: discrepancies caused by boundary effects.
    Jounet A; Zappoli B; Mojtabi A
    Phys Rev Lett; 2000 Apr; 84(15):3224-7. PubMed ID: 11019056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization and Heat Transfer Performance of Mini-Grooved Flat Heat Pipe Filled with Different Working Fluids.
    Xin F; Lyu Q; Tian W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.