These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
629 related articles for article (PubMed ID: 21230664)
1. Spontaneous symmetry breaking and bifurcations in ground-state fidelity for quantum lattice systems. Zhao JH; Wang HL; Li B; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061127. PubMed ID: 21230664 [TBL] [Abstract][Full Text] [Related]
2. Universal construction of order parameters for translation-invariant quantum lattice systems with symmetry-breaking order. Liu JH; Shi QQ; Wang HL; Links J; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):020102. PubMed ID: 23005705 [TBL] [Abstract][Full Text] [Related]
3. Quantum fidelity for degenerate ground states in quantum phase transitions. Su YH; Hu BQ; Li SH; Cho SY Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032110. PubMed ID: 24125217 [TBL] [Abstract][Full Text] [Related]
4. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model. Dai YW; Cho SY; Batchelor MT; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062142. PubMed ID: 25019759 [TBL] [Abstract][Full Text] [Related]
5. Quantum phase transitions in a two-dimensional quantum XYX model: ground-state fidelity and entanglement. Li B; Li SH; Zhou HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):060101. PubMed ID: 19658453 [TBL] [Abstract][Full Text] [Related]
6. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory. Schwerdtfeger CA; Mazziotti DA J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757 [TBL] [Abstract][Full Text] [Related]
7. Ground state fidelity from tensor network representations. Zhou HQ; Orús R; Vidal G Phys Rev Lett; 2008 Feb; 100(8):080601. PubMed ID: 18352611 [TBL] [Abstract][Full Text] [Related]
8. Transverse fields to tune an Ising-nematic quantum phase transition. Maharaj AV; Rosenberg EW; Hristov AT; Berg E; Fernandes RM; Fisher IR; Kivelson SA Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13430-13434. PubMed ID: 29208710 [TBL] [Abstract][Full Text] [Related]
9. Phase transition in space: how far does a symmetry bend before it breaks? Zurek WH; Dorner U Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1877):2953-72. PubMed ID: 18534945 [TBL] [Abstract][Full Text] [Related]
10. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model. Wang HT; Cho SY J Phys Condens Matter; 2015 Jan; 27(1):015603. PubMed ID: 25478955 [TBL] [Abstract][Full Text] [Related]
11. Bilayer graphene. Tunable fractional quantum Hall phases in bilayer graphene. Maher P; Wang L; Gao Y; Forsythe C; Taniguchi T; Watanabe K; Abanin D; Papić Z; Cadden-Zimansky P; Hone J; Kim P; Dean CR Science; 2014 Jul; 345(6192):61-4. PubMed ID: 24994646 [TBL] [Abstract][Full Text] [Related]
12. Fidelity Mechanics: Analogues of the Four Thermodynamic Laws and Landauer's Principle. Zhou HQ; Shi QQ; Dai YW Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141191 [TBL] [Abstract][Full Text] [Related]
13. Symmetry breaking in the collinear phase of the J1-J2 Heisenberg model. Singh RR; Zheng W; Oitmaa J; Sushkov OP; Hamer CJ Phys Rev Lett; 2003 Jul; 91(1):017201. PubMed ID: 12906567 [TBL] [Abstract][Full Text] [Related]
14. Universal order parameters and quantum phase transitions: a finite-size approach. Shi QQ; Zhou HQ; Batchelor MT Sci Rep; 2015 Jan; 5():7673. PubMed ID: 25567585 [TBL] [Abstract][Full Text] [Related]
15. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Jordan J; Orús R; Vidal G; Verstraete F; Cirac JI Phys Rev Lett; 2008 Dec; 101(25):250602. PubMed ID: 19113687 [TBL] [Abstract][Full Text] [Related]
16. Quantum fidelity approach to the ground-state properties of the one-dimensional axial next-nearest-neighbor Ising model in a transverse field. Bonfim OFA; Boechat B; Florencio J Phys Rev E; 2017 Oct; 96(4-1):042140. PubMed ID: 29347483 [TBL] [Abstract][Full Text] [Related]
18. First-order phase transition and phase coexistence in a spin-glass model. Crisanti A; Leuzzi L Phys Rev Lett; 2002 Dec; 89(23):237204. PubMed ID: 12485037 [TBL] [Abstract][Full Text] [Related]
19. Characteristic quantum phase in Heisenberg antiferromagnetic chain with exchange and single-ion anisotropies. Dai YW; Liu XJ; Li SH; Chen AM Phys Rev E; 2022 Nov; 106(5-1):054104. PubMed ID: 36559519 [TBL] [Abstract][Full Text] [Related]