These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21230751)

  • 1. Particle-layering effect in wall-bounded dissipative particle dynamics.
    Litvinov S; Ellero M; Hu X; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066704. PubMed ID: 21230751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems.
    Pivkin IV; Karniadakis GE
    J Chem Phys; 2006 May; 124(18):184101. PubMed ID: 16709091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of dissipative particle dynamics models for complex fluids via the Mori-Zwanzig formulation.
    Li Z; Bian X; Caswell B; Karniadakis GE
    Soft Matter; 2014 Nov; 10(43):8659-72. PubMed ID: 25252001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-scale coarse-graining of non-conservative interactions in molecular liquids.
    Izvekov S; Rice BM
    J Chem Phys; 2014 Mar; 140(10):104104. PubMed ID: 24628149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling density fluctuations in wall-bounded dissipative particle dynamics systems.
    Pivkin IV; Karniadakis GE
    Phys Rev Lett; 2006 May; 96(20):206001. PubMed ID: 16803187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for estimating the interactions in dissipative particle dynamics from particle trajectories.
    Eriksson A; Jacobi MN; Nyström J; Tunstrøm K
    J Phys Condens Matter; 2009 Mar; 21(9):095401. PubMed ID: 21817387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using force covariance to derive effective stochastic interactions in dissipative particle dynamics.
    Eriksson A; Jacobi MN; Nyström J; Tunstrøm K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016707. PubMed ID: 18351960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear and non-linear dynamics of entangled linear polymer melts by modified tunable coarse-grained level dissipative particle dynamics.
    Yamanoi M; Pozo O; Maia JM
    J Chem Phys; 2011 Jul; 135(4):044904. PubMed ID: 21806158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the importance of shear dissipative forces in coarse-grained dynamics of molecular liquids.
    Izvekov S; Rice BM
    Phys Chem Chem Phys; 2015 Apr; 17(16):10795-804. PubMed ID: 25812678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations.
    Liu H; Xue YH; Qian HJ; Lu ZY; Sun CC
    J Chem Phys; 2008 Jul; 129(2):024902. PubMed ID: 18624558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An introduction to dissipative particle dynamics.
    Lu ZY; Wang YL
    Methods Mol Biol; 2013; 924():617-33. PubMed ID: 23034766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene.
    Guerrault X; Rousseau B; Farago J
    J Chem Phys; 2004 Oct; 121(13):6538-46. PubMed ID: 15446955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of stress tensors in Poiseuille flow of suspensions.
    Chatterjee A; Heine DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021401. PubMed ID: 20866803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse graining and scaling in dissipative particle dynamics.
    Füchslin RM; Fellermann H; Eriksson A; Ziock HJ
    J Chem Phys; 2009 Jun; 130(21):214102. PubMed ID: 19508051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows.
    Keaveny EE; Pivkin IV; Maxey M; Em Karniadakis G
    J Chem Phys; 2005 Sep; 123(10):104107. PubMed ID: 16178589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative-particle-dynamics model for two-phase flows.
    Tiwari A; Abraham J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056701. PubMed ID: 17280015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method.
    Mo CJ; Yang LJ; Zhao F; Cui KD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023008. PubMed ID: 26382504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between theoretical values and simulation results of viscosity for the dissipative particle dynamics method.
    Satoh A; Majima T
    J Colloid Interface Sci; 2005 Mar; 283(1):251-66. PubMed ID: 15694446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers.
    Khani S; Yamanoi M; Maia J
    J Chem Phys; 2013 May; 138(17):174903. PubMed ID: 23656155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.