These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

20 related articles for article (PubMed ID: 21230798)

  • 1. Electron momentum densities near Dirac cones: Anisotropic Umklapp scattering and momentum broadening.
    Hiraoka N; Nomura T
    Sci Rep; 2017 Apr; 7(1):565. PubMed ID: 28373659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of electron-phonon coupling via phonon dispersion measurements in graphite using angle-resolved photoelectron spectroscopy.
    Tanaka S; Matsunami M; Kimura S
    Sci Rep; 2013 Oct; 3():3031. PubMed ID: 24149916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite.
    Ishida Y; Togashi T; Yamamoto K; Tanaka M; Taniuchi T; Kiss T; Nakajima M; Suemoto T; Shin S
    Sci Rep; 2011; 1():64. PubMed ID: 22355583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy.
    Valla T; Camacho J; Pan ZH; Fedorov AV; Walters AC; Howard CA; Ellerby M
    Phys Rev Lett; 2009 Mar; 102(10):107007. PubMed ID: 19392151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sharp contrasts in low-energy quasiparticle dynamics of graphite between Brillouin zone K and H points.
    Lee JD; Han SW; Inoue J
    Phys Rev Lett; 2008 May; 100(21):216801. PubMed ID: 18518624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent and incoherent electron-phonon coupling in graphite observed with radio-frequency compressed ultrafast electron diffraction.
    Chatelain RP; Morrison VR; Klarenaar BL; Siwick BJ
    Phys Rev Lett; 2014 Dec; 113(23):235502. PubMed ID: 25526134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of a universal donor-dependent vibrational mode in graphene.
    Fedorov AV; Verbitskiy NI; Haberer D; Struzzi C; Petaccia L; Usachov D; Vilkov OY; Vyalikh DV; Fink J; Knupfer M; Büchner B; Grüneis A
    Nat Commun; 2014; 5():3257. PubMed ID: 24500121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for superconductivity in Li-decorated monolayer graphene.
    Ludbrook BM; Levy G; Nigge P; Zonno M; Schneider M; Dvorak DJ; Veenstra CN; Zhdanovich S; Wong D; Dosanjh P; Straßer C; Stöhr A; Forti S; Ast CR; Starke U; Damascelli A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11795-9. PubMed ID: 26351697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-nickel interfaces: a review.
    Dahal A; Batzill M
    Nanoscale; 2014 Mar; 6(5):2548-62. PubMed ID: 24477601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-induced gaps in graphene and graphite observed by angle-resolved photoemission.
    Liu Y; Zhang L; Brinkley MK; Bian G; Miller T; Chiang TC
    Phys Rev Lett; 2010 Sep; 105(13):136804. PubMed ID: 21230798
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 1.