These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1411 related articles for article (PubMed ID: 21230799)

  • 1. Atomically thin MoS₂: a new direct-gap semiconductor.
    Mak KF; Lee C; Hone J; Shan J; Heinz TF
    Phys Rev Lett; 2010 Sep; 105(13):136805. PubMed ID: 21230799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂.
    Tonndorf P; Schmidt R; Böttger P; Zhang X; Börner J; Liebig A; Albrecht M; Kloc C; Gordan O; Zahn DR; Michaelis de Vasconcellos S; Bratschitsch R
    Opt Express; 2013 Feb; 21(4):4908-16. PubMed ID: 23482024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2.
    Zhao W; Ghorannevis Z; Chu L; Toh M; Kloc C; Tan PH; Eda G
    ACS Nano; 2013 Jan; 7(1):791-7. PubMed ID: 23256505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals.
    Shi H; Yan R; Bertolazzi S; Brivio J; Gao B; Kis A; Jena D; Xing HG; Huang L
    ACS Nano; 2013 Feb; 7(2):1072-80. PubMed ID: 23273148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging.
    Castellanos-Gomez A; Quereda J; van der Meulen HP; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2016 Mar; 27(11):115705. PubMed ID: 26876671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy.
    Woomer AH; Farnsworth TW; Hu J; Wells RA; Donley CL; Warren SC
    ACS Nano; 2015 Sep; 9(9):8869-84. PubMed ID: 26256770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optical response of monolayer, few-layer and bulk tungsten disulfide.
    Molas MR; Nogajewski K; Slobodeniuk AO; Binder J; Bartos M; Potemski M
    Nanoscale; 2017 Sep; 9(35):13128-13141. PubMed ID: 28849844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties and band gap of single- and few-layer MoTe2 crystals.
    Ruppert C; Aslan B; Heinz TF
    Nano Lett; 2014 Nov; 14(11):6231-6. PubMed ID: 25302768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys.
    Chen Y; Xi J; Dumcenco DO; Liu Z; Suenaga K; Wang D; Shuai Z; Huang YS; Xie L
    ACS Nano; 2013 May; 7(5):4610-6. PubMed ID: 23600688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How good can monolayer MoS₂ transistors be?
    Yoon Y; Ganapathi K; Salahuddin S
    Nano Lett; 2011 Sep; 11(9):3768-73. PubMed ID: 21790188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of structural and electronic properties standardized description in rhenium disulfide at the bulk-monolayer transition.
    Baglov A; Khoroshko L; Zhoidzik A; Dong M; Weng Q; Kazi M; Khandaker MU; Islam MA; Chowdhury ZZ; Sayyed MI; Trukhanov S; Tishkevich D; Trukhanov A
    Heliyon; 2024 Apr; 10(7):e28646. PubMed ID: 38586325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing metallic nanoroads on a MoS₂ monolayer via hydrogenation.
    Cai Y; Bai Z; Pan H; Feng YP; Yakobson BI; Zhang YW
    Nanoscale; 2014; 6(3):1691-7. PubMed ID: 24343306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GeP
    Jing Y; Ma Y; Li Y; Heine T
    Nano Lett; 2017 Mar; 17(3):1833-1838. PubMed ID: 28125237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions.
    Dey P; Paul J; Wang Z; Stevens CE; Liu C; Romero AH; Shan J; Hilton DJ; Karaiskaj D
    Phys Rev Lett; 2016 Mar; 116(12):127402. PubMed ID: 27058100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of a quasi-freestanding MoS₂ monolayer.
    Eknapakul T; King PD; Asakawa M; Buaphet P; He RH; Mo SK; Takagi H; Shen KM; Baumberger F; Sasagawa T; Jungthawan S; Meevasana W
    Nano Lett; 2014 Mar; 14(3):1312-6. PubMed ID: 24552197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single layer of MX₃ (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics.
    Jin Y; Li X; Yang J
    Phys Chem Chem Phys; 2015 Jul; 17(28):18665-9. PubMed ID: 26118742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Atomically Thin Boron Films on Copper Foils.
    Tai G; Hu T; Zhou Y; Wang X; Kong J; Zeng T; You Y; Wang Q
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15473-7. PubMed ID: 26510179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the Electronic and Optical Properties of Tetragonal ZnSe Monolayers by Chalcogen Dopants.
    Zhou J; Li Y; Wu X; Qin W
    Chemphyschem; 2016 Jul; 17(13):1993-8. PubMed ID: 26972924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 71.