These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21230936)

  • 1. Lattice fluctuations at a double phonon frequency with and without squeezing: an exactly solvable model of an optically excited quantum dot.
    Sauer S; Daniels JM; Reiter DE; Kuhn T; Vagov A; Axt VM
    Phys Rev Lett; 2010 Oct; 105(15):157401. PubMed ID: 21230936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary Phonon Squeezing by Optical Polaron Excitation.
    Papenkort T; Axt VM; Kuhn T
    Phys Rev Lett; 2017 Mar; 118(9):097401. PubMed ID: 28306296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model.
    Joshi C; Irish EK; Spiller TP
    Sci Rep; 2017 Mar; 7():45587. PubMed ID: 28358025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directly observing squeezed phonon states with femtosecond x-ray diffraction.
    Johnson SL; Beaud P; Vorobeva E; Milne CJ; Murray ED; Fahy S; Ingold G
    Phys Rev Lett; 2009 May; 102(17):175503. PubMed ID: 19518793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
    Quilter JH; Brash AJ; Liu F; Glässl M; Barth AM; Axt VM; Ramsay AJ; Skolnick MS; Fox AM
    Phys Rev Lett; 2015 Apr; 114(13):137401. PubMed ID: 25884136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots.
    Ramsay AJ; Godden TM; Boyle SJ; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Oct; 105(17):177402. PubMed ID: 21231078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots.
    Ramsay AJ; Gopal AV; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Jan; 104(1):017402. PubMed ID: 20366392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic phonon sideband dynamics during polaron formation in a single quantum dot.
    Wigger D; Karakhanyan V; Schneider C; Kamp M; Höfling S; Machnikowski P; Kuhn T; Kasprzak J
    Opt Lett; 2020 Feb; 45(4):919-922. PubMed ID: 32058506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2007 May; 98(18):187401. PubMed ID: 17501607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman phonon emission in a driven double quantum dot.
    Colless JI; Croot XG; Stace TM; Doherty AC; Barrett SD; Lu H; Gossard AC; Reilly DJ
    Nat Commun; 2014 Apr; 5():3716. PubMed ID: 24759675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional dynamics of interacting quantum dots.
    Robledo L; Elzerman J; Jundt G; Atatüre M; Högele A; Fält S; Imamoglu A
    Science; 2008 May; 320(5877):772-5. PubMed ID: 18467585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals.
    Granados Del Águila A; Jha B; Pietra F; Groeneveld E; de Mello Donegá C; Maan JC; Vanmaekelbergh D; Christianen PC
    ACS Nano; 2014 Jun; 8(6):5921-31. PubMed ID: 24861569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot.
    Jauffred L; Kyrsting A; Arnspang EC; Reihani SN; Oddershede LB
    Nanoscale; 2014 Jun; 6(12):6997-7003. PubMed ID: 24839080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light.
    Dwyer S; Barsotti L; Chua SS; Evans M; Factourovich M; Gustafson D; Isogai T; Kawabe K; Khalaidovski A; Lam PK; Landry M; Mavalvala N; McClelland DE; Meadors GD; Mow-Lowry CM; Schnabel R; Schofield RM; Smith-Lefebvre N; Stefszky M; Vorvick C; Sigg D
    Opt Express; 2013 Aug; 21(16):19047-60. PubMed ID: 23938820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.
    Wang ZW; Li SS
    J Phys Condens Matter; 2011 Jun; 23(22):225303. PubMed ID: 21593554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing confined phonon modes by transport through a nanowire double quantum dot.
    Weber C; Fuhrer A; Fasth C; Lindwall G; Samuelson L; Wacker A
    Phys Rev Lett; 2010 Jan; 104(3):036801. PubMed ID: 20366667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system.
    Carmele A; Richter M; Chow WW; Knorr A
    Phys Rev Lett; 2010 Apr; 104(15):156801. PubMed ID: 20482004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.