These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21230986)

  • 21. Ultrasonic Healing of Plastrons.
    Drago-González A; Fauconnier M; Karunakaran B; Wong WSY; Ras RHA; Nieminen HJ
    Adv Sci (Weinh); 2024 Jul; ():e2403028. PubMed ID: 38946620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobicity from the Inside.
    Simovich T; Ritchie C; Belev G; Cooper DML; Lamb RN
    Langmuir; 2017 Dec; 33(49):13990-13995. PubMed ID: 29064712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in the mechanical durability of superhydrophobic materials.
    Milionis A; Loth E; Bayer IS
    Adv Colloid Interface Sci; 2016 Mar; 229():57-79. PubMed ID: 26792021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unusual Dual Superlyophobic Surfaces in Oil-Water Systems: The Design Principles.
    Tian X; Jokinen V; Li J; Sainio J; Ras RH
    Adv Mater; 2016 Dec; 28(48):10652-10658. PubMed ID: 27731514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term stability of aerophilic metallic surfaces underwater.
    Tesler AB; Kolle S; Prado LH; Thievessen I; Böhringer D; Backholm M; Karunakaran B; Nurmi HA; Latikka M; Fischer L; Stafslien S; Cenev ZM; Timonen JVI; Bruns M; Mazare A; Lohbauer U; Virtanen S; Fabry B; Schmuki P; Ras RHA; Aizenberg J; Goldmann WH
    Nat Mater; 2023 Dec; 22(12):1548-1555. PubMed ID: 37723337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction.
    Brennan JC; Geraldi NR; Morris RH; Fairhurst DJ; McHale G; Newton MI
    Sci Rep; 2015 May; 5():10267. PubMed ID: 25975704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Symmetric and asymmetric meniscus collapse in wetting transition on submerged structured surfaces.
    Lv P; Xue Y; Liu H; Shi Y; Xi P; Lin H; Duan H
    Langmuir; 2015 Feb; 31(4):1248-54. PubMed ID: 25548941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Underwater sustainability of the "Cassie" state of wetting.
    Bobji MS; Kumar SV; Asthana A; Govardhan RN
    Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.
    Wu H; Yang Z; Cao B; Zhang Z; Zhu K; Wu B; Jiang S; Chai G
    Langmuir; 2017 Jan; 33(1):407-416. PubMed ID: 27989127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of transitions between wetting states on microcavity arrays by optical transmission microscopy.
    Søgaard E; Andersen NK; Smistrup K; Larsen ST; Sun L; Taboryski R
    Langmuir; 2014 Nov; 30(43):12960-8. PubMed ID: 25289462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of underwater stability of superhydrophobic surfaces using quartz crystal microresonators.
    Lee M; Yim C; Jeon S
    Langmuir; 2014 Jul; 30(27):7931-5. PubMed ID: 24978595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films.
    Aytug T; Bogorin DF; Paranthaman PM; Mathis JE; Simpson JT; Christen DK
    Nanotechnology; 2014 Jun; 25(24):245601. PubMed ID: 24857856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of superhydrophobic wetting state on corrosion protection--the AKD example.
    Ejenstam L; Ovaskainen L; Rodriguez-Meizoso I; Wågberg L; Pan J; Swerin A; Claesson PM
    J Colloid Interface Sci; 2013 Dec; 412():56-64. PubMed ID: 24144374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Durable superhydrophilic/phobic surfaces based on green patina with corrosion resistance.
    Cho H; Lee J; Lee S; Hwang W
    Phys Chem Chem Phys; 2015 Mar; 17(10):6786-93. PubMed ID: 25670158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superhydrophobicity on hairy surfaces.
    Blow ML; Yeomans JM
    Langmuir; 2010 Oct; 26(20):16071-83. PubMed ID: 20843052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts.
    Hemeda AA; Tafreshi HV
    Langmuir; 2014 Sep; 30(34):10317-27. PubMed ID: 25109908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultimate Stable Underwater Superhydrophobic State.
    Xiang Y; Huang S; Lv P; Xue Y; Su Q; Duan H
    Phys Rev Lett; 2017 Sep; 119(13):134501. PubMed ID: 29341680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.