These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21231030)

  • 1. Coherent transport of atomic quantum states in a scalable shift register.
    Lengwenus A; Kruse J; Schlosser M; Tichelmann S; Birkl G
    Phys Rev Lett; 2010 Oct; 105(17):170502. PubMed ID: 21231030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherence properties and quantum state transportation in an optical conveyor belt.
    Kuhr S; Alt W; Schrader D; Dotsenko I; Miroshnychenko Y; Rosenfeld W; Khudaverdyan M; Gomer V; Rauschenbeutel A; Meschede D
    Phys Rev Lett; 2003 Nov; 91(21):213002. PubMed ID: 14683295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement-induced entanglement for excitation stored in remote atomic ensembles.
    Chou CW; de Riedmatten H; Felinto D; Polyakov SV; van Enk SJ; Kimble HJ
    Nature; 2005 Dec; 438(7069):828-32. PubMed ID: 16341008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherence Preservation of a Single Neutral Atom Qubit Transferred between Magic-Intensity Optical Traps.
    Yang J; He X; Guo R; Xu P; Wang K; Sheng C; Liu M; Wang J; Derevianko A; Zhan M
    Phys Rev Lett; 2016 Sep; 117(12):123201. PubMed ID: 27689269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.
    Cao C; Wang C; He LY; Zhang R
    Opt Express; 2013 Feb; 21(4):4093-105. PubMed ID: 23481943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.
    Abdelrahman A; Mukai T; Häffner H; Byrnes T
    Opt Express; 2014 Feb; 22(3):3501-13. PubMed ID: 24663640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect-Free Assembly of 2D Clusters of More Than 100 Single-Atom Quantum Systems.
    Ohl de Mello D; Schäffner D; Werkmann J; Preuschoff T; Kohfahl L; Schlosser M; Birkl G
    Phys Rev Lett; 2019 May; 122(20):203601. PubMed ID: 31172754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Half-minute-scale atomic coherence and high relative stability in a tweezer clock.
    Young AW; Eckner WJ; Milner WR; Kedar D; Norcia MA; Oelker E; Schine N; Ye J; Kaufman AM
    Nature; 2020 Dec; 588(7838):408-413. PubMed ID: 33328666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent transport of neutral atoms in spin-dependent optical lattice potentials.
    Mandel O; Greiner M; Widera A; Rom T; Hänsch TW; Bloch I
    Phys Rev Lett; 2003 Jul; 91(1):010407. PubMed ID: 12906526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantum scattering interferometer.
    Hart RA; Xu X; Legere R; Gibble K
    Nature; 2007 Apr; 446(7138):892-5. PubMed ID: 17443182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable photonic network architecture based on motional averaging in room temperature gas.
    Borregaard J; Zugenmaier M; Petersen JM; Shen H; Vasilakis G; Jensen K; Polzik ES; Sørensen AS
    Nat Commun; 2016 Apr; 7():11356. PubMed ID: 27076381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bose-Einstein condensation of atomic gases.
    Anglin JR; Ketterle W
    Nature; 2002 Mar; 416(6877):211-8. PubMed ID: 11894104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indistinguishability and interference in the coherent control of atomic and molecular processes.
    Gong J; Brumer P
    J Chem Phys; 2010 Feb; 132(5):054306. PubMed ID: 20136315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled exchange interaction between pairs of neutral atoms in an optical lattice.
    Anderlini M; Lee PJ; Brown BL; Sebby-Strabley J; Phillips WD; Porto JV
    Nature; 2007 Jul; 448(7152):452-6. PubMed ID: 17653187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits.
    Dumke R; Volk M; Müther T; Buchkremer FB; Birkl G; Ertmer W
    Phys Rev Lett; 2002 Aug; 89(9):097903. PubMed ID: 12190441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of single-site addressability in a two-dimensional optical lattice.
    Würtz P; Langen T; Gericke T; Koglbauer A; Ott H
    Phys Rev Lett; 2009 Aug; 103(8):080404. PubMed ID: 19792698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable loading of a two-dimensional trapped-ion array.
    Bruzewicz CD; McConnell R; Chiaverini J; Sage JM
    Nat Commun; 2016 Sep; 7():13005. PubMed ID: 27677357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic microchip traps and single-atom detection.
    Long R; Steinmetz T; Hommelhoff P; Hänsel W; Hänsch TW; Reichel J
    Philos Trans A Math Phys Eng Sci; 2003 Jul; 361(1808):1375-89. PubMed ID: 12869314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip.
    Bernon S; Hattermann H; Bothner D; Knufinke M; Weiss P; Jessen F; Cano D; Kemmler M; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2013; 4():2380. PubMed ID: 23986123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.