These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21231320)

  • 1. Achieving large uniform tensile ductility in nanocrystalline metals.
    Wang YM; Ott RT; Hamza AV; Besser MF; Almer J; Kramer MJ
    Phys Rev Lett; 2010 Nov; 105(21):215502. PubMed ID: 21231320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High tensile ductility in a nanostructured metal.
    Wang Y; Chen M; Zhou F; Ma E
    Nature; 2002 Oct; 419(6910):912-5. PubMed ID: 12410306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength.
    Yang M; Yan D; Yuan F; Jiang P; Ma E; Wu X
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7224-7229. PubMed ID: 29946032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation Twinning Induced High Tensile Ductility of a Gradient Nanograined Cu-Based Alloy.
    Wang J; Tao N
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys.
    Duan F; Li Q; Jiang Z; Zhou L; Luan J; Shen Z; Zhou W; Zhang S; Pan J; Zhou X; Yang T; Lu J
    Nat Commun; 2024 Aug; 15(1):6832. PubMed ID: 39122677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter- and intra-agglomerate fracture in nanocrystalline nickel.
    Shan Z; Knapp JA; Follstaedt DM; Stach EA; Wiezorek JM; Mao SX
    Phys Rev Lett; 2008 Mar; 100(10):105502. PubMed ID: 18352202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of Lomer-Cottrell locks during strain hardening in nanocrystalline nickel by in situ TEM.
    Lee JH; Holland TB; Mukherjee AK; Zhang X; Wang H
    Sci Rep; 2013; 3():1061. PubMed ID: 23320142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniting tensile ductility with ultrahigh strength via composition undulation.
    Li H; Zong H; Li S; Jin S; Chen Y; Cabral MJ; Chen B; Huang Q; Chen Y; Ren Y; Yu K; Han S; Ding X; Sha G; Lian J; Liao X; Ma E; Sun J
    Nature; 2022 Apr; 604(7905):273-279. PubMed ID: 35418634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to Achieve High Strength and Ductility of Pulsed Electrodeposited Nanocrystalline Co-Cu by Tuning the Deposition Parameters.
    Pratama K; Motz C
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33171606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites.
    Li Z; Zhang Y; Zhang Z; Cui YT; Guo Q; Liu P; Jin S; Sha G; Ding K; Li Z; Fan T; Urbassek HM; Yu Q; Zhu T; Zhang D; Wang YM
    Nat Commun; 2022 Sep; 13(1):5581. PubMed ID: 36151199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.
    Seyring M; Song X; Rettenmayr M
    ACS Nano; 2011 Apr; 5(4):2580-6. PubMed ID: 21375327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic Insight into Grain Boundary Deformation Induced Strengthening in Layer-Grained Nanocrystalline Al.
    Jing P; Wang Y; Zhou Y; Shi W
    Langmuir; 2023 Jul; 39(28):9963-9971. PubMed ID: 37390453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Dependence of Deformation Behaviors in High Manganese Austenitic Steel for Cryogenic Applications.
    Chen J; Li S; Ren JK; Liu ZY
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraordinary strain hardening by gradient structure.
    Wu X; Jiang P; Chen L; Yuan F; Zhu YT
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7197-201. PubMed ID: 24799688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse grain-size effect on twinning in nanocrystalline Ni.
    Wu XL; Zhu YT
    Phys Rev Lett; 2008 Jul; 101(2):025503. PubMed ID: 18764195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni-Fe.
    Schäfer J; Albe K
    Beilstein J Nanotechnol; 2013; 4():542-53. PubMed ID: 24205450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-dependent deformation behavior in nanocrystalline metals.
    Li H; Choo H; Ren Y; Saleh TA; Lienert U; Liaw PK; Ebrahimi F
    Phys Rev Lett; 2008 Jul; 101(1):015502. PubMed ID: 18764123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.