These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21231373)

  • 1. Schwinger limit attainability with extreme power lasers.
    Bulanov SS; Esirkepov TZh; Thomas AG; Koga JK; Bulanov SV
    Phys Rev Lett; 2010 Nov; 105(22):220407. PubMed ID: 21231373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Colliding Laser Pulses Polarization on e^{-}e^{+} Cascade Development in Extreme Focusing.
    Jirka M; Bulanov SV
    Phys Rev Lett; 2024 Sep; 133(12):125001. PubMed ID: 39373451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser field absorption in self-generated electron-positron pair plasma.
    Nerush EN; Kostyukov IY; Fedotov AM; Narozhny NB; Elkina NV; Ruhl H
    Phys Rev Lett; 2011 Jan; 106(3):035001. PubMed ID: 21405278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation.
    Myatt J; Delettrez JA; Maximov AV; Meyerhofer DD; Short RW; Stoeckl C; Storm M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066409. PubMed ID: 19658614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damping of electromagnetic waves due to electron-positron pair production.
    Bulanov SS; Fedotov AM; Pegoraro F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016404. PubMed ID: 15697732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-pulse-shape control of seeded QED cascades.
    Tamburini M; Di Piazza A; Keitel CH
    Sci Rep; 2017 Jul; 7(1):5694. PubMed ID: 28720854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron dynamics and γ and e(-)e(+) production by colliding laser pulses.
    Jirka M; Klimo O; Bulanov SV; Esirkepov TZh; Gelfer E; Bulanov SS; Weber S; Korn G
    Phys Rev E; 2016 Feb; 93(2):023207. PubMed ID: 26986432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum signatures for Schwinger pair production in short laser pulses with a subcycle structure.
    Hebenstreit F; Alkofer R; Dunne GV; Gies H
    Phys Rev Lett; 2009 Apr; 102(15):150404. PubMed ID: 19518608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically assisted Schwinger mechanism.
    Schützhold R; Gies H; Dunne G
    Phys Rev Lett; 2008 Sep; 101(13):130404. PubMed ID: 18851425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stokes phenomenon and schwinger vacuum pair production in time-dependent laser pulses.
    Dumlu CK; Dunne GV
    Phys Rev Lett; 2010 Jun; 104(25):250402. PubMed ID: 20867351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pair production and optical lasers.
    Blaschke DB; Prozorkevich AV; Roberts CD; Schmidt SM; Smolyansky SA
    Phys Rev Lett; 2006 Apr; 96(14):140402. PubMed ID: 16712053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-Matter Interaction near the Schwinger Limit Using Tightly Focused Doppler-Boosted Lasers.
    Zaïm N; Sainte-Marie A; Fedeli L; Bartoli P; Huebl A; Leblanc A; Vay JL; Vincenti H
    Phys Rev Lett; 2024 Apr; 132(17):175002. PubMed ID: 38728726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Faraday effect with linearly polarized laser pulses.
    Ali S; Davies JR; Mendonca JT
    Phys Rev Lett; 2010 Jul; 105(3):035001. PubMed ID: 20867772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ e- pair production from vacuum.
    Bulanov SS; Mur VD; Narozhny NB; Nees J; Popov VS
    Phys Rev Lett; 2010 Jun; 104(22):220404. PubMed ID: 20867152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-driven plasma pinching in e^{-}e^{+} cascade.
    Efimenko ES; Bashinov AV; Gonoskov AA; Bastrakov SI; Muraviev AA; Meyerov IB; Kim AV; Sergeev AM
    Phys Rev E; 2019 Mar; 99(3-1):031201. PubMed ID: 30999535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Chemical Reactions by Short, Intense Mid-Infrared Laser Pulses: Comparison of Linear and Circularly Polarized Light in Simulations of ClCHO(+) Fragmentation.
    Shi X; Thapa B; Li W; Schlegel HB
    J Phys Chem A; 2016 Feb; 120(7):1120-6. PubMed ID: 26814607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of photodetachment in a strong laser field of circular polarization.
    Bergues B; Ni Y; Helm H; Kiyan IY
    Phys Rev Lett; 2005 Dec; 95(26):263002. PubMed ID: 16486348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).
    Bulanov SV; Esirkepov TZh; Kando M; Koga JK; Bulanov SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056605. PubMed ID: 22181534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.
    Vinokurov NA; Jeong YU
    Phys Rev Lett; 2013 Feb; 110(6):064805. PubMed ID: 23432259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic heating and acceleration of electrons in colliding laser fields in plasma.
    Sheng ZM; Mima K; Sentoku Y; Jovanović MS; Taguchi T; Zhang J; Meyer-Ter-Vehn J
    Phys Rev Lett; 2002 Feb; 88(5):055004. PubMed ID: 11863737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.